Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 218148 by mnjuly1970 last updated on 30/Mar/25

     I=∫_0 ^( ∞)  ((sin((√( x ))))/( (( e^x ))^(1/4) ))dx=?

I=0sin(x)ex4dx=?

Answered by MrGaster last updated on 31/Mar/25

Let t=(√x)⇒x=t^2 ,dx=2t dt  ∫_0 ^∞ sin(t)e^(−t^2 /4) ∙2t dt  u=sin(t),du=2te^(−t^2 /4) dt  du=cos(t)dt,v=−4e^(−t^2 /4)   −4e^(−t^2 /4 ) sin(t)dt,v=−4e^(−t^2 /4)   −4e^(−t^2 /4) sin(t)∣_0 ^∞ +4∫_0 ^∞ e^(−t^2 /4) cos(t)dt  =4∫_0 ^∞ e^(−t^2 /4) cos(t)dt  ∫_0 ^∞ e^(−t^2 ) cos(bt)dt=(1/2)(√(π/a))e^(−b^2 /(4a))   a=(1/4),b=1⇒∫_0 ^∞ e^(−t^2 /4) cos(t)dt=(1/2)  =(1/2)∙2(√π)∙e^(−1) =(√π)∙(1/e)  4∙(√π)∙(1/e)=((4(√π))/e)

Lett=xx=t2,dx=2tdt0sin(t)et2/42tdtu=sin(t),du=2tet2/4dtdu=cos(t)dt,v=4et2/44et2/4sin(t)dt,v=4et2/44et2/4sin(t)0+40et2/4cos(t)dt=40et2/4cos(t)dt0et2cos(bt)dt=12πaeb2/(4a)a=14,b=10et2/4cos(t)dt=12=122πe1=π1e4π1e=4πe

Commented by mnjuly1970 last updated on 31/Mar/25

Answered by mnjuly1970 last updated on 31/Mar/25

     I= L { sin((√x) )}∣_(s=(1/4))           = ((√π)/(2s^(3/2) )) e^(−(1/(4s))) ∣_(s=(1/4)) = ((√π)/(2((1/2))^3 )) e^(−1)        = 4 ((√π)/e)

I=L{sin(x)}s=14=π2s32e14ss=14=π2(12)3e1=4πe

Terms of Service

Privacy Policy

Contact: info@tinkutara.com