Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 21825 by Joel577 last updated on 05/Oct/17

Find the simplest form of  Σ_(k = 1) ^n 2^k [sin^2  (((2kπ)/3)) + (1/4)]

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{simplest}\:\mathrm{form}\:\mathrm{of} \\ $$$$\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left[\mathrm{sin}^{\mathrm{2}} \:\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{4}}\right] \\ $$

Commented by sma3l2996 last updated on 05/Oct/17

   we have : sin(((2kπ)/3))=sin(((2π)/3))  so  Σ_(k=1) ^n 2^k (sin^2 (((2kπ)/3))+(1/4))=Σ_(k=1) ^n 2^k (sin^2 ((2π)/3)+(1/4))  =Σ_(k=1) ^n 2^k ((((√3)/2))^2 +(1/4))=Σ_(k=1) ^n 2^k ((3/4)+(1/4))  =Σ_(k=1) ^n 2^k   let   a_k =2^k =a_1 q^(k−1) =2×2^(k−1)   so  q=a_1 =2  let  S_n =a_1 +a_2 +...+a_n =((a_1 (q^n −1))/(q−1))  S_n =Σ_(k=0) ^n 2^k =((2(2^n −1))/(2−1))=2(2^n −1)  so  Σ_(k=0) ^n 2^k (sin^2 (((2kπ)/3))+(1/4))=2^(n+1) −2

$$ \\ $$$$\:{we}\:{have}\::\:{sin}\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right)={sin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$$${so}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left({sin}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left({sin}^{\mathrm{2}} \frac{\mathrm{2}\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left(\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left(\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \\ $$$${let}\:\:\:{a}_{{k}} =\mathrm{2}^{{k}} ={a}_{\mathrm{1}} {q}^{{k}−\mathrm{1}} =\mathrm{2}×\mathrm{2}^{{k}−\mathrm{1}} \\ $$$${so}\:\:{q}={a}_{\mathrm{1}} =\mathrm{2} \\ $$$${let}\:\:{S}_{{n}} ={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} =\frac{{a}_{\mathrm{1}} \left({q}^{{n}} −\mathrm{1}\right)}{{q}−\mathrm{1}} \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} =\frac{\mathrm{2}\left(\mathrm{2}^{{n}} −\mathrm{1}\right)}{\mathrm{2}−\mathrm{1}}=\mathrm{2}\left(\mathrm{2}^{{n}} −\mathrm{1}\right) \\ $$$${so} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left({sin}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\right)=\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{2} \\ $$

Commented by Joel577 last updated on 05/Oct/17

but if k = 3, then sin^2  (((6π)/3)) ≠ sin^2  (((2π)/3))

$$\mathrm{but}\:\mathrm{if}\:{k}\:=\:\mathrm{3},\:\mathrm{then}\:\mathrm{sin}^{\mathrm{2}} \:\left(\frac{\mathrm{6}\pi}{\mathrm{3}}\right)\:\neq\:\mathrm{sin}^{\mathrm{2}} \:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com