Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 2186 by Yozzi last updated on 07/Nov/15

Let J=∫_0 ^∞ f((x−x^(−1) )^2 )dx where f is  any function for which the integral  exists. Show that  J=∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx=0.5∫_0 ^∞ (1+x^(−2) )f((x−x^(−1) )^2 )dx=∫_0 ^∞ f(u^2 )du.

$${Let}\:{J}=\int_{\mathrm{0}} ^{\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}\:{where}\:{f}\:{is} \\ $$$${any}\:{function}\:{for}\:{which}\:{the}\:{integral} \\ $$$${exists}.\:{Show}\:{that} \\ $$$${J}=\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}=\mathrm{0}.\mathrm{5}\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du}. \\ $$$$ \\ $$

Answered by prakash jain last updated on 07/Nov/15

(1/t)=x⇒x=0 , t=∞;x=∞,t=0  −t^(−2) dt=dx  J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx  =−∫_∞ ^( 0) t^(−2) f((t^(−1) −t)^2 )dt  =−∫_∞ ^( 0) t^(−2) f((t−t^(−1) )^2 )dt  =∫_0 ^( ∞) t^(−2) f((t−t^(−1) )^2 )dt  =∫_0 ^( ∞) x^(−2) f((x−x^(−1) )^2 )dx  (change variable x=t)  J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx=∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx  2J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx+∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx  2J=∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )d  ⇒J=0.5∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )dx  x−x^(−1) =u⇒(1+x^(−2) )dx=du  x=0,u=−∞  x=∞,u=∞  J=0.5∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )dx  =0.5∫_(−∞) ^∞ f(u^2 )du  f(u^2 ) is even, hence  J=0.5×2∫_0 ^∞ f(u^2 )du=∫_0 ^∞ f(u^2 )du

$$\frac{\mathrm{1}}{{t}}={x}\Rightarrow{x}=\mathrm{0}\:,\:{t}=\infty;{x}=\infty,{t}=\mathrm{0} \\ $$$$−{t}^{−\mathrm{2}} {dt}={dx} \\ $$$${J}=\int_{\mathrm{0}} ^{\:\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$=−\int_{\infty} ^{\:\mathrm{0}} {t}^{−\mathrm{2}} {f}\left(\left({t}^{−\mathrm{1}} −{t}\right)^{\mathrm{2}} \right){dt} \\ $$$$=−\int_{\infty} ^{\:\mathrm{0}} {t}^{−\mathrm{2}} {f}\left(\left({t}−{t}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\:\infty} {t}^{−\mathrm{2}} {f}\left(\left({t}−{t}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\:\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}\:\:\left({change}\:{variable}\:{x}={t}\right) \\ $$$${J}=\int_{\mathrm{0}} ^{\:\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$\mathrm{2}{J}=\int_{\mathrm{0}} ^{\:\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}+\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$\mathrm{2}{J}=\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){d} \\ $$$$\Rightarrow{J}=\mathrm{0}.\mathrm{5}\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$${x}−{x}^{−\mathrm{1}} ={u}\Rightarrow\left(\mathrm{1}+{x}^{−\mathrm{2}} \right){dx}={du} \\ $$$${x}=\mathrm{0},{u}=−\infty \\ $$$${x}=\infty,{u}=\infty \\ $$$${J}=\mathrm{0}.\mathrm{5}\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$=\mathrm{0}.\mathrm{5}\int_{−\infty} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du} \\ $$$${f}\left({u}^{\mathrm{2}} \right)\:{is}\:{even},\:{hence} \\ $$$${J}=\mathrm{0}.\mathrm{5}×\mathrm{2}\int_{\mathrm{0}} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du}=\int_{\mathrm{0}} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du} \\ $$

Commented by Yozzi last updated on 07/Nov/15

Thanks!

$${Thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com