Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 21870 by Tinkutara last updated on 05/Oct/17

A wire of mass 9.8 × 10^(−3)  kg per meter  passes over a frictionless pulley fixed  on the top of an inclined frictionless  plane which makes an angle of 30° with  the horizontal. Masses M_1  and M_2  are  tied at the two ends of the wire. The  mass M_1  rests on the plane and the  mass M_2  hangs freely vertically  downward. The whole system is in  equilibrium. Now a transverse wave  propagates along the wire with a  velocity of 100 m/s. Find M_1  and M_2   (g = 9.8 m/s^2 ).

$$\mathrm{A}\:\mathrm{wire}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{9}.\mathrm{8}\:×\:\mathrm{10}^{−\mathrm{3}} \:\mathrm{kg}\:\mathrm{per}\:\mathrm{meter} \\ $$$$\mathrm{passes}\:\mathrm{over}\:\mathrm{a}\:\mathrm{frictionless}\:\mathrm{pulley}\:\mathrm{fixed} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{frictionless} \\ $$$$\mathrm{plane}\:\mathrm{which}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{30}°\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{Masses}\:{M}_{\mathrm{1}} \:\mathrm{and}\:{M}_{\mathrm{2}} \:\mathrm{are} \\ $$$$\mathrm{tied}\:\mathrm{at}\:\mathrm{the}\:\mathrm{two}\:\mathrm{ends}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}.\:\mathrm{The} \\ $$$$\mathrm{mass}\:{M}_{\mathrm{1}} \:\mathrm{rests}\:\mathrm{on}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{mass}\:{M}_{\mathrm{2}} \:\mathrm{hangs}\:\mathrm{freely}\:\mathrm{vertically} \\ $$$$\mathrm{downward}.\:\mathrm{The}\:\mathrm{whole}\:\mathrm{system}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}.\:\mathrm{Now}\:\mathrm{a}\:\mathrm{transverse}\:\mathrm{wave} \\ $$$$\mathrm{propagates}\:\mathrm{along}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{100}\:\mathrm{m}/\mathrm{s}.\:\mathrm{Find}\:{M}_{\mathrm{1}} \:\mathrm{and}\:{M}_{\mathrm{2}} \\ $$$$\left({g}\:=\:\mathrm{9}.\mathrm{8}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right). \\ $$

Answered by ajfour last updated on 05/Oct/17

M_1 gsin 30°=M_2 g  ⇒ M_1 =2M_2   Tension in wire be T.  T=M_2 g  velocity of transverse wave    v=(√(T/μ)) =(√((M_2 g)/μ)) =(√((M_2 (9.8m/s^2 ))/(9.8×10^(−3) kg/m)))   ⇒(100m/s)^2 = M_2 ×10^6 m^2 /kg.s^2   or   M_2 =10g     M_1 =2M_2 =20g .

$${M}_{\mathrm{1}} {g}\mathrm{sin}\:\mathrm{30}°={M}_{\mathrm{2}} {g} \\ $$$$\Rightarrow\:{M}_{\mathrm{1}} =\mathrm{2}{M}_{\mathrm{2}} \\ $$$${Tension}\:{in}\:{wire}\:{be}\:{T}. \\ $$$${T}={M}_{\mathrm{2}} {g} \\ $$$${velocity}\:{of}\:{transverse}\:{wave}\: \\ $$$$\:{v}=\sqrt{\frac{{T}}{\mu}}\:=\sqrt{\frac{{M}_{\mathrm{2}} {g}}{\mu}}\:=\sqrt{\frac{{M}_{\mathrm{2}} \left(\mathrm{9}.\mathrm{8}{m}/{s}^{\mathrm{2}} \right)}{\mathrm{9}.\mathrm{8}×\mathrm{10}^{−\mathrm{3}} {kg}/{m}}}\: \\ $$$$\Rightarrow\left(\mathrm{100}{m}/{s}\right)^{\mathrm{2}} =\:{M}_{\mathrm{2}} ×\mathrm{10}^{\mathrm{6}} {m}^{\mathrm{2}} /{kg}.{s}^{\mathrm{2}} \\ $$$${or}\:\:\:{M}_{\mathrm{2}} =\mathrm{10}{g} \\ $$$$\:\:\:{M}_{\mathrm{1}} =\mathrm{2}{M}_{\mathrm{2}} =\mathrm{20}{g}\:. \\ $$

Commented by Tinkutara last updated on 06/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com