Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21874 by tawa tawa last updated on 05/Oct/17

Find the remainder if   2^(2006)  is divided by  17

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{if}\:\:\:\mathrm{2}^{\mathrm{2006}} \:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\:\mathrm{17} \\ $$

Answered by mrW1 last updated on 06/Oct/17

2^(2006) =2^2 ×2^(2004) =4×(2^4 )^(501) =4×(16)^(501)   =4×(17−1)^(501)  mod 17=−4=13  ⇒remainder =13

$$\mathrm{2}^{\mathrm{2006}} =\mathrm{2}^{\mathrm{2}} ×\mathrm{2}^{\mathrm{2004}} =\mathrm{4}×\left(\mathrm{2}^{\mathrm{4}} \right)^{\mathrm{501}} =\mathrm{4}×\left(\mathrm{16}\right)^{\mathrm{501}} \\ $$$$=\mathrm{4}×\left(\mathrm{17}−\mathrm{1}\right)^{\mathrm{501}} \:\mathrm{mod}\:\mathrm{17}=−\mathrm{4}=\mathrm{13} \\ $$$$\Rightarrow\mathrm{remainder}\:=\mathrm{13} \\ $$

Commented by tawa tawa last updated on 06/Oct/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by Tinkutara last updated on 06/Oct/17

By Fermat′s theorem,  2^(17−1) ≡1(mod 17)  2^(16) ≡1(mod 17)  2^(2000) ≡1(mod 17)  2^(2006) ≡64(mod 17)≡13(mod 17)

$$\mathrm{By}\:\mathrm{Fermat}'\mathrm{s}\:\mathrm{theorem}, \\ $$$$\mathrm{2}^{\mathrm{17}−\mathrm{1}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{17}\right) \\ $$$$\mathrm{2}^{\mathrm{16}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{17}\right) \\ $$$$\mathrm{2}^{\mathrm{2000}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{17}\right) \\ $$$$\mathrm{2}^{\mathrm{2006}} \equiv\mathrm{64}\left(\mathrm{mod}\:\mathrm{17}\right)\equiv\mathrm{13}\left(\mathrm{mod}\:\mathrm{17}\right) \\ $$

Commented by tawa tawa last updated on 06/Oct/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com