Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21940 by Tinkutara last updated on 07/Oct/17

A polynomial function f(x) satisfies  f(x)f((1/x)) = 2f(x) + 2f((1/x)); x ≠ 0 and  f(2) = 18, then f(3) is equal to

$$\mathrm{A}\:\mathrm{polynomial}\:\mathrm{function}\:{f}\left({x}\right)\:\mathrm{satisfies} \\ $$$${f}\left({x}\right){f}\left(\frac{\mathrm{1}}{{x}}\right)\:=\:\mathrm{2}{f}\left({x}\right)\:+\:\mathrm{2}{f}\left(\frac{\mathrm{1}}{{x}}\right);\:{x}\:\neq\:\mathrm{0}\:\mathrm{and} \\ $$$${f}\left(\mathrm{2}\right)\:=\:\mathrm{18},\:\mathrm{then}\:{f}\left(\mathrm{3}\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Commented by ajfour last updated on 07/Nov/18

No one solved this, if correct  its a good one!

$${No}\:{one}\:{solved}\:{this},\:{if}\:{correct} \\ $$$${its}\:{a}\:{good}\:{one}! \\ $$

Answered by rahul 19 last updated on 08/Nov/18

56 ?  Got the function 2(x^3 +1).....

$$\mathrm{56}\:? \\ $$$${Got}\:{the}\:{function}\:\mathrm{2}\left({x}^{\mathrm{3}} +\mathrm{1}\right)..... \\ $$

Commented by ajfour last updated on 08/Nov/18

steps please, dont know answer!

$${steps}\:{please},\:{dont}\:{know}\:{answer}! \\ $$

Answered by rahul 19 last updated on 08/Nov/18

Let f(x)= a_0 x^n +a_1 x^(n−1) +....+a_(n−1) x+a_n .  Acc . to given condition,  (a_0 x^n +a_1 x^(n−1) ......+a_n )((a_0 /x^n )+(a_1 /x^(n−1) )+......a_n )   = 2[(a_0 x^n +a_1 x^(n−1) ....+a_n ) + ((a_0 /x^(n ) ) +(a_1 /x^(n−1) )....+a_n )]  ⇒ On comparing coeff. of x^n ,  a_0 a_n = 2a_(0 ) ⇒ a_n =2  On comparing coeff. of x^(n−1) ,  a_(n−1) =0.....  ........similarly,a_(n−2) =.....=a_1 =0  and a_0 = ∓2.  ∴ f(x) = 2(∓x^n +1).  Now in this case   f(2)=18   ⇒ f(x)= 2(x^3 +1)  ⇒ f(3)=56.

$${Let}\:{f}\left({x}\right)=\:{a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +....+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} . \\ $$$${Acc}\:.\:{to}\:{given}\:{condition}, \\ $$$$\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} ......+{a}_{{n}} \right)\left(\frac{{a}_{\mathrm{0}} }{{x}^{{n}} }+\frac{{a}_{\mathrm{1}} }{{x}^{{n}−\mathrm{1}} }+......{a}_{{n}} \right) \\ $$$$\:=\:\mathrm{2}\left[\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} ....+{a}_{{n}} \right)\:+\:\left(\frac{{a}_{\mathrm{0}} }{{x}^{{n}\:} }\:+\frac{{a}_{\mathrm{1}} }{{x}^{{n}−\mathrm{1}} }....+{a}_{{n}} \right)\right] \\ $$$$\Rightarrow\:{On}\:{comparing}\:{coeff}.\:{of}\:{x}^{{n}} , \\ $$$${a}_{\mathrm{0}} {a}_{{n}} =\:\mathrm{2}{a}_{\mathrm{0}\:} \Rightarrow\:{a}_{{n}} =\mathrm{2} \\ $$$${On}\:{comparing}\:{coeff}.\:{of}\:{x}^{{n}−\mathrm{1}} , \\ $$$${a}_{{n}−\mathrm{1}} =\mathrm{0}..... \\ $$$$........{similarly},{a}_{{n}−\mathrm{2}} =.....={a}_{\mathrm{1}} =\mathrm{0} \\ $$$${and}\:{a}_{\mathrm{0}} =\:\mp\mathrm{2}. \\ $$$$\therefore\:{f}\left({x}\right)\:=\:\mathrm{2}\left(\mp{x}^{{n}} +\mathrm{1}\right). \\ $$$${Now}\:{in}\:{this}\:{case}\: \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{18}\: \\ $$$$\Rightarrow\:{f}\left({x}\right)=\:\mathrm{2}\left({x}^{\mathrm{3}} +\mathrm{1}\right) \\ $$$$\Rightarrow\:{f}\left(\mathrm{3}\right)=\mathrm{56}. \\ $$

Commented by ajfour last updated on 08/Nov/18

Yes Rahul Sir, Thanks.

$${Yes}\:{Rahul}\:{Sir},\:{Thanks}. \\ $$

Answered by ajfour last updated on 08/Nov/18

(a_n x^n +a_(n−1) x^(n−1) +...+a_1 x+a_0 )  ×(1/x^n )(a_n +a_(n−1) x+....+a_1 x^(n−1) +a_0 x^n )   = (1/x^n )[a_n a_0 x^(2n) +(a_(n−1) a_0 +a_n a_1 )x^(2n−1) +....    .....+(a_n a_n +a_(n−1) a_(n−1) +...+a_0 a_0 +)x^n  +...  ...+(a_1 a_n +a_0 a_(n−1) )x+a_0 a_n  ]    = (2/x^n )[(a_n x^(2n) +a_(n−1) x^(2n−1) +....        ....+a_0 x^n )+(a_0 x^n +a_1 x^(n−1) +...         ....+a_(n−1) x+a_n )]  comparing coeffs.      a_n a_0  = 2a_n     ⇒  a_0 = 2      a_(n−1) a_0 +a_n a_1 = 2a_(n−1)   ⇒ a_1 =0      a_n a_2 +a_(n−1) a_1 +a_(n−2) a_0 = 2a_(n−2)                 ⇒  a_2 = 0  and so on..  So  f(x)= a_n x^n +2          f(1)×f(1)=4f(1)  ⇒    f(1)= 0, 4  ⇒      a_n +2 = 0, 4              ⇒  a_n = ±2  ⇒   f(2)=±2(2^n +1) = 18  So   a_n = 2  &  n= 3          f(3)= 2(3^3 +1)= 56 .

$$\left({a}_{{n}} {x}^{{n}} +{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} +...+{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \right) \\ $$$$×\frac{\mathrm{1}}{{x}^{{n}} }\left({a}_{{n}} +{a}_{{n}−\mathrm{1}} {x}+....+{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +{a}_{\mathrm{0}} {x}^{{n}} \right) \\ $$$$\:=\:\frac{\mathrm{1}}{{x}^{{n}} }\left[{a}_{{n}} {a}_{\mathrm{0}} {x}^{\mathrm{2}{n}} +\left({a}_{{n}−\mathrm{1}} {a}_{\mathrm{0}} +{a}_{{n}} {a}_{\mathrm{1}} \right){x}^{\mathrm{2}{n}−\mathrm{1}} +....\right. \\ $$$$\:\:.....+\left({a}_{{n}} {a}_{{n}} +{a}_{{n}−\mathrm{1}} {a}_{{n}−\mathrm{1}} +...+{a}_{\mathrm{0}} {a}_{\mathrm{0}} +\right){x}^{{n}} \:+... \\ $$$$\left....+\left({a}_{\mathrm{1}} {a}_{{n}} +{a}_{\mathrm{0}} {a}_{{n}−\mathrm{1}} \right){x}+{a}_{\mathrm{0}} {a}_{{n}} \:\right] \\ $$$$\:\:=\:\frac{\mathrm{2}}{{x}^{{n}} }\left[\left({a}_{{n}} {x}^{\mathrm{2}{n}} +{a}_{{n}−\mathrm{1}} {x}^{\mathrm{2}{n}−\mathrm{1}} +....\right.\right. \\ $$$$\left.\:\:\:\:\:\:....+{a}_{\mathrm{0}} {x}^{{n}} \right)+\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +...\right. \\ $$$$\left.\:\left.\:\:\:\:\:\:....+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} \right)\right] \\ $$$${comparing}\:{coeffs}. \\ $$$$\:\:\:\:{a}_{{n}} {a}_{\mathrm{0}} \:=\:\mathrm{2}{a}_{{n}} \:\:\:\:\Rightarrow\:\:{a}_{\mathrm{0}} =\:\mathrm{2} \\ $$$$\:\:\:\:{a}_{{n}−\mathrm{1}} {a}_{\mathrm{0}} +{a}_{{n}} {a}_{\mathrm{1}} =\:\mathrm{2}{a}_{{n}−\mathrm{1}} \:\:\Rightarrow\:{a}_{\mathrm{1}} =\mathrm{0} \\ $$$$\:\:\:\:{a}_{{n}} {a}_{\mathrm{2}} +{a}_{{n}−\mathrm{1}} {a}_{\mathrm{1}} +{a}_{{n}−\mathrm{2}} {a}_{\mathrm{0}} =\:\mathrm{2}{a}_{{n}−\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:{a}_{\mathrm{2}} =\:\mathrm{0} \\ $$$${and}\:{so}\:{on}.. \\ $$$${So}\:\:{f}\left({x}\right)=\:{a}_{{n}} {x}^{{n}} +\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:{f}\left(\mathrm{1}\right)×{f}\left(\mathrm{1}\right)=\mathrm{4}{f}\left(\mathrm{1}\right) \\ $$$$\Rightarrow\:\:\:\:{f}\left(\mathrm{1}\right)=\:\mathrm{0},\:\mathrm{4} \\ $$$$\Rightarrow\:\:\:\:\:\:{a}_{{n}} +\mathrm{2}\:=\:\mathrm{0},\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:{a}_{{n}} =\:\pm\mathrm{2} \\ $$$$\Rightarrow\:\:\:{f}\left(\mathrm{2}\right)=\pm\mathrm{2}\left(\mathrm{2}^{{n}} +\mathrm{1}\right)\:=\:\mathrm{18} \\ $$$${So}\:\:\:{a}_{{n}} =\:\mathrm{2}\:\:\&\:\:{n}=\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:{f}\left(\mathrm{3}\right)=\:\mathrm{2}\left(\mathrm{3}^{\mathrm{3}} +\mathrm{1}\right)=\:\mathrm{56}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com