Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21990 by hi147 last updated on 08/Oct/17

i still search about a general and   complete solution about this  determine x in N where 7 divise 2^x +3^x   note = it is just an exercise in secondary  so dont go away...  maybe we must use separation of cases  methode....

$${i}\:{still}\:{search}\:{about}\:{a}\:{general}\:{and}\: \\ $$$${complete}\:{solution}\:{about}\:{this} \\ $$$${determine}\:{x}\:{in}\:{N}\:{where}\:\mathrm{7}\:{divise}\:\mathrm{2}^{{x}} +\mathrm{3}^{{x}} \\ $$$${note}\:=\:{it}\:{is}\:{just}\:{an}\:{exercise}\:{in}\:{secondary} \\ $$$${so}\:{dont}\:{go}\:{away}... \\ $$$${maybe}\:{we}\:{must}\:{use}\:{separation}\:{of}\:{cases} \\ $$$${methode}.... \\ $$

Commented by Tinkutara last updated on 11/Oct/17

I got x ≡ 3 (mod 6). Is this true?

$$\mathrm{I}\:\mathrm{got}\:{x}\:\equiv\:\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{6}\right).\:\mathrm{Is}\:\mathrm{this}\:\mathrm{true}? \\ $$

Answered by Tinkutara last updated on 11/Oct/17

By Fermat′s little theorem,  2^6 ≡1(mod 7)  ⇒2^(6k+r) ≡2^r (mod 7)  Similarly, 3^(6k+r) ≡3^r (mod 7)  ⇒ 2^(6k+r) +3^(6k+r) ≡2^r +3^r (mod 7)  For k=0 and trying for 0<r<6,  2^1 +3^1 ≡5(mod 7)  2^2 +3^2 ≡6(mod 7)  2^3 +3^3 ≡0(mod 7)  2^4 +3^4 ≡6(mod 7)  2^1 +3^1 ≡2(mod 7)  Hence x≡3(mod 6).

$${By}\:{Fermat}'{s}\:{little}\:{theorem}, \\ $$$$\mathrm{2}^{\mathrm{6}} \equiv\mathrm{1}\left({mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{6}{k}+{r}} \equiv\mathrm{2}^{{r}} \left({mod}\:\mathrm{7}\right) \\ $$$${Similarly},\:\mathrm{3}^{\mathrm{6}{k}+{r}} \equiv\mathrm{3}^{{r}} \left({mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\:\mathrm{2}^{\mathrm{6}{k}+{r}} +\mathrm{3}^{\mathrm{6}{k}+{r}} \equiv\mathrm{2}^{{r}} +\mathrm{3}^{{r}} \left({mod}\:\mathrm{7}\right) \\ $$$${For}\:{k}=\mathrm{0}\:{and}\:{trying}\:{for}\:\mathrm{0}<{r}<\mathrm{6}, \\ $$$$\mathrm{2}^{\mathrm{1}} +\mathrm{3}^{\mathrm{1}} \equiv\mathrm{5}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \equiv\mathrm{6}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{2}^{\mathrm{4}} +\mathrm{3}^{\mathrm{4}} \equiv\mathrm{6}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{2}^{\mathrm{1}} +\mathrm{3}^{\mathrm{1}} \equiv\mathrm{2}\left({mod}\:\mathrm{7}\right) \\ $$$${Hence}\:{x}\equiv\mathrm{3}\left({mod}\:\mathrm{6}\right). \\ $$

Commented by hi147 last updated on 16/Oct/17

thats good but how can we prove that  it is the only solution.i mean 6k+3.   and we have an other problem = it is  just an exercise in secondary  and we dont have fermat s littel theorem  in this livel.so.....

$${thats}\:{good}\:{but}\:{how}\:{can}\:{we}\:{prove}\:{that} \\ $$$${it}\:{is}\:{the}\:{only}\:{solution}.{i}\:{mean}\:\mathrm{6}{k}+\mathrm{3}.\: \\ $$$${and}\:{we}\:{have}\:{an}\:{other}\:{problem}\:=\:{it}\:{is} \\ $$$${just}\:{an}\:{exercise}\:{in}\:{secondary} \\ $$$${and}\:{we}\:{dont}\:{have}\:{fermat}\:{s}\:{littel}\:{theorem} \\ $$$${in}\:{this}\:{livel}.{so}..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com