Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 2210 by Yozzi last updated on 08/Nov/15

Evaluate     ∫_0 ^∞ (dx/(x^4 +2x^2 cosα+1))  (0<α<π).

$${Evaluate}\: \\ $$ $$\:\:\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\alpha+\mathrm{1}}\:\:\left(\mathrm{0}<\alpha<\pi\right). \\ $$

Commented by123456 last updated on 09/Nov/15

−(1/2)ıcosec α(((tan^(−1) (x/(√e^(−ıα) )))/(√e^(−ıα) ))−((tan^(−1) (x/(√e^(ıα) )))/(√e^(ıα) )))  c.m

$$−\frac{\mathrm{1}}{\mathrm{2}}\imath\mathrm{cosec}\:\alpha\left(\frac{\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\sqrt{{e}^{−\imath\alpha} }}}{\sqrt{{e}^{−\imath\alpha} }}−\frac{\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\sqrt{{e}^{\imath\alpha} }}}{\sqrt{{e}^{\imath\alpha} }}\right) \\ $$ $$\mathrm{c}.\mathrm{m} \\ $$

Commented byprakash jain last updated on 09/Nov/15

(1/(x^4 +2x^2 cosα+cos^2 α+1−cos^2 α))  =(1/((x^2 +cosα)^2 +sin^2 α))  =(1/((x^2 +cos α−isin α)(x^2 +cos α+isin α)))  =(1/((x^2 +e^(−iα) )(x^2 +e^(iα) )))

$$\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\alpha+\mathrm{cos}^{\mathrm{2}} \alpha+\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \alpha} \\ $$ $$=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{cos}\alpha\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \alpha} \\ $$ $$=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{cos}\:\alpha−{i}\mathrm{sin}\:\alpha\right)\left({x}^{\mathrm{2}} +\mathrm{cos}\:\alpha+{i}\mathrm{sin}\:\alpha\right)} \\ $$ $$=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{e}^{−{i}\alpha} \right)\left({x}^{\mathrm{2}} +{e}^{{i}\alpha} \right)} \\ $$

Answered by prakash jain last updated on 09/Nov/15

(1/((x^2 +e^(iα) )(x^2 +e^(−iα) )))  =(1/((e^(iα) −e^(−iα) )))((1/(x^2 +e^(−iα) ))−(1/(x^2 +e^(iα) )))  Integrating ∫(1/(x^2 +a^2 ))=(1/a)tan^(−1) (x/a)  =(1/(2sin iα))[(1/(√e^(−iα) ))tan^(−1) (x/(√e^(−iα) ))−(1/(√e^(iα) ))tan^(−1) (x/(√e^(iα) ))]

$$\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{e}^{{i}\alpha} \right)\left({x}^{\mathrm{2}} +{e}^{−{i}\alpha} \right)} \\ $$ $$=\frac{\mathrm{1}}{\left({e}^{{i}\alpha} −{e}^{−{i}\alpha} \right)}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{e}^{−{i}\alpha} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{e}^{{i}\alpha} }\right) \\ $$ $$\mathrm{Integrating}\:\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{{a}} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2sin}\:{i}\alpha}\left[\frac{\mathrm{1}}{\sqrt{{e}^{−{i}\alpha} }}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\sqrt{{e}^{−{i}\alpha} }}−\frac{\mathrm{1}}{\sqrt{{e}^{{i}\alpha} }}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\sqrt{{e}^{{i}\alpha} }}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com