Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 2212 by Yozzi last updated on 09/Nov/15

∫(dt/((1−kt)(√(1−t^2 ))))=?  0<k<1

$$\int\frac{{dt}}{\left(\mathrm{1}−{kt}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=?\:\:\mathrm{0}<{k}<\mathrm{1} \\ $$

Commented by123456 last updated on 09/Nov/15

((ln ((√(k^2 −1))(√(1−x^2 ))+k−x)−ln (1−kx))/(√(k^2 −1)))  c.m

$$\frac{\mathrm{ln}\:\left(\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+{k}−{x}\right)−\mathrm{ln}\:\left(\mathrm{1}−{kx}\right)}{\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}} \\ $$ $$\mathrm{c}.\mathrm{m} \\ $$

Commented byprakash jain last updated on 09/Nov/15

t=sin u  dt=cos udu  ∫(du/(1−ksin u))  integrate with tan(u/2)=v  sin u=((2v)/(1+v^2 ))  cos u=((1−v^2 )/(1+v^2 ))  (1/2)sec^2 (u/2)du=dv  du=((2dv)/((1+v^2 )))  ∫(1/((1−k((2v)/(1+v^2 )))))∙((2dv)/((1+v^2 )))=∫((2dv)/(1+v^2 −2kv))  to be continued in answer.

$${t}=\mathrm{sin}\:{u} \\ $$ $${dt}=\mathrm{cos}\:{udu} \\ $$ $$\int\frac{{du}}{\mathrm{1}−{k}\mathrm{sin}\:{u}} \\ $$ $$\mathrm{integrate}\:\mathrm{with}\:\mathrm{tan}\frac{{u}}{\mathrm{2}}={v} \\ $$ $$\mathrm{sin}\:{u}=\frac{\mathrm{2}{v}}{\mathrm{1}+{v}^{\mathrm{2}} } \\ $$ $$\mathrm{cos}\:{u}=\frac{\mathrm{1}−{v}^{\mathrm{2}} }{\mathrm{1}+{v}^{\mathrm{2}} } \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}^{\mathrm{2}} \frac{{u}}{\mathrm{2}}{du}={dv} \\ $$ $${du}=\frac{\mathrm{2}{dv}}{\left(\mathrm{1}+{v}^{\mathrm{2}} \right)} \\ $$ $$\int\frac{\mathrm{1}}{\left(\mathrm{1}−{k}\frac{\mathrm{2}{v}}{\mathrm{1}+{v}^{\mathrm{2}} }\right)}\centerdot\frac{\mathrm{2}{dv}}{\left(\mathrm{1}+{v}^{\mathrm{2}} \right)}=\int\frac{\mathrm{2}{dv}}{\mathrm{1}+{v}^{\mathrm{2}} −\mathrm{2}{kv}} \\ $$ $${to}\:{be}\:{continued}\:{in}\:{answer}. \\ $$

Answered by Filup last updated on 09/Nov/15

k=0  ∫(1/((1−0t)(√(1−t^2 ))))dt=∫(1/(√(1−t^2 )))  t=sin θ        dt=cos θdθ  =∫((cos θ)/(√(1−sin^2 θ)))dθ  =∫((cos θ)/(cos θ))dθ  =∫dθ=θ+c           c=constant  =sin^(−1) (t)+c          −1≤t≤1       (1)    k=1  ∫(1/((1−t)(√(1−t^2 ))))dt  t=sin θ         dt=cos θdθ  =∫((cos θ)/((1−sin θ)(√(1−sin^2 θ))))dθ  =∫((cos θ)/((1−sin θ)cos θ))dθ  =∫(1/(1−sin θ))dθ         (2)  (continue)    sin^(−1) (t)<∫(1/((1−kt)(√(1−t^2 ))))dt<∫(1/(1−sin θ))dθ

$${k}=\mathrm{0} \\ $$ $$\int\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{0}{t}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}=\int\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$ $${t}=\mathrm{sin}\:\theta\:\:\:\:\:\:\:\:{dt}=\mathrm{cos}\:\theta{d}\theta \\ $$ $$=\int\frac{\mathrm{cos}\:\theta}{\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \theta}}{d}\theta \\ $$ $$=\int\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:\theta}{d}\theta \\ $$ $$=\int{d}\theta=\theta+{c}\:\:\:\:\:\:\:\:\:\:\:{c}=\mathrm{constant} \\ $$ $$=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{t}\right)+{c}\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\leqslant{t}\leqslant\mathrm{1}\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$ $$ \\ $$ $${k}=\mathrm{1} \\ $$ $$\int\frac{\mathrm{1}}{\left(\mathrm{1}−{t}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt} \\ $$ $${t}=\mathrm{sin}\:\theta\:\:\:\:\:\:\:\:\:{dt}=\mathrm{cos}\:\theta{d}\theta \\ $$ $$=\int\frac{\mathrm{cos}\:\theta}{\left(\mathrm{1}−\mathrm{sin}\:\theta\right)\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \theta}}{d}\theta \\ $$ $$=\int\frac{\mathrm{cos}\:\theta}{\left(\mathrm{1}−\mathrm{sin}\:\theta\right)\mathrm{cos}\:\theta}{d}\theta \\ $$ $$=\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\theta}{d}\theta\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$ $$\left(\mathrm{continue}\right) \\ $$ $$ \\ $$ $$\mathrm{sin}^{−\mathrm{1}} \left({t}\right)<\int\frac{\mathrm{1}}{\left(\mathrm{1}−{kt}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}<\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\theta}{d}\theta \\ $$ $$ \\ $$

Commented byFilup last updated on 09/Nov/15

I′m not sure how to finish this problem  so i hope this is partially correct and on the  right track

$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{how}\:\mathrm{to}\:\mathrm{finish}\:\mathrm{this}\:\mathrm{problem} \\ $$ $$\mathrm{so}\:\mathrm{i}\:\mathrm{hope}\:\mathrm{this}\:\mathrm{is}\:\mathrm{partially}\:\mathrm{correct}\:\mathrm{and}\:\mathrm{on}\:\mathrm{the} \\ $$ $$\mathrm{right}\:\mathrm{track} \\ $$

Answered by prakash jain last updated on 09/Nov/15

∫((2dv)/(1+v^2 −2kv))=∫((2dv)/((v−k)^2 +((√(1−k^2 )))^2 ))  =(2/(√(1−k^2 )))tan^(−1) ((v−k)/(√(1−k^2 )))  v=tan (u/2),u=sin^(−1) x

$$\int\frac{\mathrm{2}{dv}}{\mathrm{1}+{v}^{\mathrm{2}} −\mathrm{2}{kv}}=\int\frac{\mathrm{2}{dv}}{\left({v}−{k}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$ $$=\frac{\mathrm{2}}{\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}\mathrm{tan}^{−\mathrm{1}} \frac{{v}−{k}}{\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }} \\ $$ $${v}=\mathrm{tan}\:\frac{{u}}{\mathrm{2}},{u}=\mathrm{sin}^{−\mathrm{1}} {x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com