Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 22139 by Tinkutara last updated on 11/Oct/17

The linear mass density, i.e. mass per  unit length of the rope, varies from 0 to  λ from one end to another. The  acceleration of the combined system  will be

$$\mathrm{The}\:\mathrm{linear}\:\mathrm{mass}\:\mathrm{density},\:{i}.{e}.\:\mathrm{mass}\:\mathrm{per} \\ $$$$\mathrm{unit}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope},\:\mathrm{varies}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to} \\ $$$$\lambda\:\mathrm{from}\:\mathrm{one}\:\mathrm{end}\:\mathrm{to}\:\mathrm{another}.\:\mathrm{The} \\ $$$$\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{combined}\:\mathrm{system} \\ $$$$\mathrm{will}\:\mathrm{be} \\ $$

Commented by Tinkutara last updated on 11/Oct/17

Commented by ajfour last updated on 11/Oct/17

let mass of rope be m.  m=∫dm=∫_0 ^(  L) μdx =∫_0 ^(  L)  (((λx)/L))dx      = ((λx^2 )/(2L))∣_0 ^L  =((λL)/2)  acceleration =(F/(M+m))              a = ((2F)/(2M+λL)) .

$${let}\:{mass}\:{of}\:{rope}\:{be}\:{m}. \\ $$$${m}=\int{dm}=\int_{\mathrm{0}} ^{\:\:{L}} \mu{dx}\:=\int_{\mathrm{0}} ^{\:\:{L}} \:\left(\frac{\lambda{x}}{{L}}\right){dx} \\ $$$$\:\:\:\:=\:\frac{\lambda{x}^{\mathrm{2}} }{\mathrm{2}{L}}\mid_{\mathrm{0}} ^{{L}} \:=\frac{\lambda{L}}{\mathrm{2}} \\ $$$${acceleration}\:=\frac{{F}}{{M}+{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{a}\:=\:\frac{\mathrm{2}{F}}{\mathrm{2}{M}+\lambda{L}}\:. \\ $$

Commented by Tinkutara last updated on 11/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com