Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 22302 by Tinkutara last updated on 14/Oct/17

A small bead of mass m is given an  initial velocity of magnitude v_0  on a  horizontal circular wire. If the  coefficient of kinetic friction is μ_k , the  determine the distance travelled before  the collar comes to rest. (Given that  radius of circular wire is R).

$$\mathrm{A}\:\mathrm{small}\:\mathrm{bead}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{given}\:\mathrm{an} \\ $$$$\mathrm{initial}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{magnitude}\:{v}_{\mathrm{0}} \:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{circular}\:\mathrm{wire}.\:\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{coefficient}\:\mathrm{of}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{is}\:\mu_{\mathrm{k}} ,\:\mathrm{the} \\ $$$$\mathrm{determine}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{travelled}\:\mathrm{before} \\ $$$$\mathrm{the}\:\mathrm{collar}\:\mathrm{comes}\:\mathrm{to}\:\mathrm{rest}.\:\left(\mathrm{Given}\:\mathrm{that}\right. \\ $$$$\left.\mathrm{radius}\:\mathrm{of}\:\mathrm{circular}\:\mathrm{wire}\:\mathrm{is}\:{R}\right). \\ $$

Answered by ajfour last updated on 15/Oct/17

f=μ_k N = μ_k (√((((mv^2 )/R))^2 +(mg)^2 ))  dW_f =dK  −μ_k ((√((((mv^2 )/R))^2 +(mg)^2 )) )Rdθ =mvdv  ⇒ −μ_k R∫_0 ^(  θ_f ) dθ =∫_v_0  ^(  0)  ((vdv)/(√(((v^2 /R))^2 +g^2 )))      μ_k Rθ_f  =(R/2)∫_0 ^(  v_0 ) ((d((v^2 /R)))/(√(((v^2 /R))^2 +g^2 )))  ⇒distance=Rθ_f =          (R/(2μ_k ))ln ∣(v^2 /R)+(√(((v^2 /R))^2 +g^2 )) ∣_0 ^v_0         =(R/(2μ_k ))ln ∣(v_0 ^2 /(Rg))+(√(((v_0 ^2 /(Rg)))^2 +1)) ∣ .

$${f}=\mu_{{k}} {N}\:=\:\mu_{{k}} \sqrt{\left(\frac{{mv}^{\mathrm{2}} }{{R}}\right)^{\mathrm{2}} +\left({mg}\right)^{\mathrm{2}} } \\ $$$${dW}_{{f}} ={dK} \\ $$$$−\mu_{{k}} \left(\sqrt{\left(\frac{{mv}^{\mathrm{2}} }{{R}}\right)^{\mathrm{2}} +\left({mg}\right)^{\mathrm{2}} }\:\right){Rd}\theta\:={mvdv} \\ $$$$\Rightarrow\:−\mu_{{k}} {R}\int_{\mathrm{0}} ^{\:\:\theta_{{f}} } {d}\theta\:=\int_{{v}_{\mathrm{0}} } ^{\:\:\mathrm{0}} \:\frac{{vdv}}{\sqrt{\left(\frac{{v}^{\mathrm{2}} }{{R}}\right)^{\mathrm{2}} +{g}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\mu_{{k}} {R}\theta_{{f}} \:=\frac{{R}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\:{v}_{\mathrm{0}} } \frac{{d}\left(\frac{{v}^{\mathrm{2}} }{{R}}\right)}{\sqrt{\left(\frac{{v}^{\mathrm{2}} }{{R}}\right)^{\mathrm{2}} +{g}^{\mathrm{2}} }} \\ $$$$\Rightarrow{distance}={R}\theta_{{f}} = \\ $$$$\:\:\:\:\:\:\:\:\frac{{R}}{\mathrm{2}\mu_{{k}} }\mathrm{ln}\:\mid\frac{{v}^{\mathrm{2}} }{{R}}+\sqrt{\left(\frac{{v}^{\mathrm{2}} }{{R}}\right)^{\mathrm{2}} +{g}^{\mathrm{2}} }\:\mid_{\mathrm{0}} ^{{v}_{\mathrm{0}} } \\ $$$$\:\:\:\:\:=\frac{{R}}{\mathrm{2}\mu_{{k}} }\mathrm{ln}\:\mid\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{{Rg}}+\sqrt{\left(\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{{Rg}}\right)^{\mathrm{2}} +\mathrm{1}}\:\mid\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 15/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com