Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 22304 by Tinkutara last updated on 15/Oct/17

A particle moves in a straight line along  x-axis. At t = 0, it is released from  rest at x = a. Acceleration of the  particle varies as (d^2 x/dt^2 ) = −(k/x^2 ) , where k  is a positive constant.  Time required by particle to reach the  origin will be

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{along} \\ $$$${x}-\mathrm{axis}.\:\mathrm{At}\:{t}\:=\:\mathrm{0},\:\mathrm{it}\:\mathrm{is}\:\mathrm{released}\:\mathrm{from} \\ $$$$\mathrm{rest}\:\mathrm{at}\:{x}\:=\:{a}.\:\mathrm{Acceleration}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{varies}\:\mathrm{as}\:\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\:=\:−\frac{{k}}{{x}^{\mathrm{2}} }\:,\:\mathrm{where}\:{k} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{constant}. \\ $$$$\mathrm{Time}\:\mathrm{required}\:\mathrm{by}\:\mathrm{particle}\:\mathrm{to}\:\mathrm{reach}\:\mathrm{the} \\ $$$$\mathrm{origin}\:\mathrm{will}\:\mathrm{be} \\ $$

Answered by ajfour last updated on 16/Oct/17

            (d^2 x/dt^2 )=((vdv)/dx)=−(k/x^2 )  ⇒       ∫_0 ^(  v) vdv = −∫_a ^(  x)  ((kdx)/x^2 )  ⇒                (v^2 /2) = +k((1/x)−(1/a))  or      v=−(√(2k)) (√((1/x)−(1/a)))   ⇒        ∫_a ^(  x) (dx/(√((1/x)−(1/a)))) =−(√(2k)) ∫_0 ^( t) dt  time taken to reach x=0 be T  ⇒   T=(1/(√(2k)))∫_0 ^(  a) (√((ax)/(a−x))) dx  let  a−x=y^2     ⇒  dx=−2ydy      x=a−y^2   ; x=0 ⇒ y=(√a)   and  x=a ⇒ y=0 ; then          T=(1/(√(2k)))∫_(√a) ^(  0) ((√(a(a−y^2 )))/y)(−2ydy)    =(√((2a)/k))∫_0 ^(  (√a)) (√(((√a))^2 −y^2 )) dy   =(√((2a)/k)) [(y/2)(√(a−y^2 ))∣_0 ^(√a) +(a/2)sin^(−1) ((y/(√a)))∣_0 ^(√a) ]  T=(√((2a)/k)) ((a/2)×(𝛑/2))=((𝛑a)/2)(√(a/(2k))) .

$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }=\frac{{vdv}}{{dx}}=−\frac{{k}}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\:{v}} {vdv}\:=\:−\int_{{a}} ^{\:\:{x}} \:\frac{{kdx}}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{v}^{\mathrm{2}} }{\mathrm{2}}\:=\:+{k}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}\right) \\ $$$${or}\:\:\:\:\:\:{v}=−\sqrt{\mathrm{2}{k}}\:\sqrt{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}}\: \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\int_{{a}} ^{\:\:{x}} \frac{{dx}}{\sqrt{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}}}\:=−\sqrt{\mathrm{2}{k}}\:\int_{\mathrm{0}} ^{\:{t}} {dt} \\ $$$${time}\:{taken}\:{to}\:{reach}\:{x}=\mathrm{0}\:{be}\:{T} \\ $$$$\Rightarrow\:\:\:{T}=\frac{\mathrm{1}}{\sqrt{\mathrm{2}{k}}}\int_{\mathrm{0}} ^{\:\:{a}} \sqrt{\frac{{ax}}{{a}−{x}}}\:{dx} \\ $$$${let}\:\:{a}−{x}={y}^{\mathrm{2}} \:\:\:\:\Rightarrow\:\:{dx}=−\mathrm{2}{ydy} \\ $$$$\:\:\:\:{x}={a}−{y}^{\mathrm{2}} \:\:;\:{x}=\mathrm{0}\:\Rightarrow\:{y}=\sqrt{{a}}\: \\ $$$${and}\:\:{x}={a}\:\Rightarrow\:{y}=\mathrm{0}\:;\:{then} \\ $$$$\:\:\:\:\:\:\:\:{T}=\frac{\mathrm{1}}{\sqrt{\mathrm{2}{k}}}\int_{\sqrt{{a}}} ^{\:\:\mathrm{0}} \frac{\sqrt{{a}\left({a}−{y}^{\mathrm{2}} \right)}}{{y}}\left(−\mathrm{2}{ydy}\right) \\ $$$$\:\:=\sqrt{\frac{\mathrm{2}{a}}{{k}}}\int_{\mathrm{0}} ^{\:\:\sqrt{{a}}} \sqrt{\left(\sqrt{{a}}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} }\:{dy} \\ $$$$\:=\sqrt{\frac{\mathrm{2}{a}}{{k}}}\:\left[\frac{{y}}{\mathrm{2}}\sqrt{{a}−{y}^{\mathrm{2}} }\mid_{\mathrm{0}} ^{\sqrt{{a}}} +\frac{{a}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \left(\frac{{y}}{\sqrt{{a}}}\right)\mid_{\mathrm{0}} ^{\sqrt{{a}}} \right] \\ $$$$\boldsymbol{{T}}=\sqrt{\frac{\mathrm{2}\boldsymbol{{a}}}{\boldsymbol{{k}}}}\:\left(\frac{\boldsymbol{{a}}}{\mathrm{2}}×\frac{\boldsymbol{\pi}}{\mathrm{2}}\right)=\frac{\boldsymbol{\pi{a}}}{\mathrm{2}}\sqrt{\frac{\boldsymbol{{a}}}{\mathrm{2}\boldsymbol{{k}}}}\:. \\ $$

Commented by squidward last updated on 16/Oct/17

4th line is incorrect too

$$\mathrm{4}{th}\:{line}\:{is}\:{incorrect}\:{too} \\ $$

Commented by Tinkutara last updated on 15/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by squidward last updated on 16/Oct/17

your 3rd line is wrong and how the hell  did you go from 3rd line to 4th?

$${your}\:\mathrm{3}{rd}\:{line}\:{is}\:{wrong}\:{and}\:{how}\:{the}\:{hell} \\ $$$${did}\:{you}\:{go}\:{from}\:\mathrm{3}{rd}\:{line}\:{to}\:\mathrm{4}{th}? \\ $$

Commented by ajfour last updated on 16/Oct/17

is it fine now ?

$${is}\:{it}\:{fine}\:{now}\:? \\ $$

Commented by ajfour last updated on 16/Oct/17

No. after being released at x=a  particle develops negative velocity.   v=±(√(2k)) (√((1/x)−(1/a)))   so we choose the −ve one .

$${No}.\:{after}\:{being}\:{released}\:{at}\:{x}={a} \\ $$$${particle}\:{develops}\:{negative}\:{velocity}. \\ $$$$\:{v}=\pm\sqrt{\mathrm{2}{k}}\:\sqrt{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}}\: \\ $$$${so}\:{we}\:{choose}\:{the}\:−{ve}\:{one}\:. \\ $$

Commented by Tinkutara last updated on 25/Nov/17

Why we chose −ve one?

$${Why}\:{we}\:{chose}\:−{ve}\:{one}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com