Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 2231 by Filup last updated on 10/Nov/15

For f(x)=x!  Is there a defined:    (1) f′(x)  (2) ∫f(x)dx

$$\mathrm{For}\:{f}\left({x}\right)={x}! \\ $$$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{defined}: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{f}'\left({x}\right) \\ $$$$\left(\mathrm{2}\right)\:\int{f}\left({x}\right){dx} \\ $$

Commented by Filup last updated on 10/Nov/15

Is this a correct assumption for (1):    y=x!  y=x(x−1)(x−2)...  ∴y=Π_(i=1) ^x i    Using Chain rule:  ∴y′=[(x−1)(x−2)...]+[x(x−2)...]+...  y′=(y/x)+(y/(x−1))+...=y((1/x)+(1/(x−1))+...+1)  y′=yΣ_(i=1) ^(x−1) ((1/i))  ∴y′=y∙H(x−1)             where H(n) is the sum to the nth              harmonic term  y=Π_(i=1) ^x i  y′=yΣ_(i=1) ^(x−1) (1/i)    Note: I have no knowledge of differentiating  this function, so this is only a guess attempt

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{a}\:\mathrm{correct}\:\mathrm{assumption}\:\mathrm{for}\:\left(\mathrm{1}\right): \\ $$$$ \\ $$$${y}={x}! \\ $$$${y}={x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)... \\ $$$$\therefore{y}=\underset{{i}=\mathrm{1}} {\overset{{x}} {\prod}}{i} \\ $$$$ \\ $$$${Using}\:{Chain}\:{rule}: \\ $$$$\therefore{y}'=\left[\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)...\right]+\left[{x}\left({x}−\mathrm{2}\right)...\right]+... \\ $$$${y}'=\frac{{y}}{{x}}+\frac{{y}}{{x}−\mathrm{1}}+...={y}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}−\mathrm{1}}+...+\mathrm{1}\right) \\ $$$${y}'={y}\underset{{i}=\mathrm{1}} {\overset{{x}−\mathrm{1}} {\sum}}\left(\frac{\mathrm{1}}{{i}}\right) \\ $$$$\therefore{y}'={y}\centerdot\mathrm{H}\left({x}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{where}\:\mathrm{H}\left({n}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{the}\:{n}\mathrm{th} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{harmonic}\:\mathrm{term} \\ $$$${y}=\underset{{i}=\mathrm{1}} {\overset{{x}} {\prod}}{i} \\ $$$${y}'={y}\underset{{i}=\mathrm{1}} {\overset{{x}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{i}} \\ $$$$ \\ $$$$\mathrm{Note}:\:\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{knowledge}\:\mathrm{of}\:\mathrm{differentiating} \\ $$$$\mathrm{this}\:\mathrm{function},\:\mathrm{so}\:\mathrm{this}\:\mathrm{is}\:\mathrm{only}\:\mathrm{a}\:\mathrm{guess}\:\mathrm{attempt} \\ $$

Commented by 123456 last updated on 10/Nov/15

f(x)=x!=Γ(x+1)  f′(x)=ψ(x+1)x!  ψ(x)=(d/dx)ln Γ(x)=((Γ′(x))/(Γ(x)))

$${f}\left({x}\right)={x}!=\Gamma\left({x}+\mathrm{1}\right) \\ $$$${f}'\left({x}\right)=\psi\left({x}+\mathrm{1}\right){x}! \\ $$$$\psi\left({x}\right)=\frac{{d}}{{dx}}\mathrm{ln}\:\Gamma\left({x}\right)=\frac{\Gamma'\left({x}\right)}{\Gamma\left({x}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com