Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 22481 by ajfour last updated on 19/Oct/17

Commented by ajfour last updated on 19/Oct/17

Q. 22479 (Solution)

$${Q}.\:\mathrm{22479}\:\left({Solution}\right) \\ $$

Answered by ajfour last updated on 19/Oct/17

When the ladder is about to slip:  If     μ_1 ≠0 , μ_2 ≠0   f_2 =μ_2 N_2 =N_1    ....(i)  f_1 +N_2 =μ_1 N_1 +N_2 =mg     ⇒   (μ_1 μ_2 +1)N_2 =mg          N_2 =((mg)/(1+μ_1 μ_2 ))   considering τorque about centre:  N_2 ((l/2))cos θ=f_2 ((l/2))sin θ+                  f_1 ((l/2))cos θ+N_1 ((l/2))sin θ  ⇒  N_2 (1−μ_2 tan θ)=N_1 (μ_1 +tan θ)                                                   .....(iii)  ⇒ If μ_1 =0 , μ_2 ≠0   then  from (ii) we get N_2 =mg, and  N_1 =μ_2 mg . Then from (iii) we get      mg(1−μ_2 tan θ)=N_1 tan θ  ⇒   mg−N_1 tan θ=N_1 tan θ  or      N_1 tan θ= ((mg)/2) .  If  μ_1 ≠0 , μ_2  =0    for the about to slip case  f_2 =0 ⇒   N_1 =0  , θ=(π/2)  N_2 =mg .  Hence  (3), (4) are correct .

$${When}\:{the}\:{ladder}\:{is}\:{about}\:{to}\:{slip}: \\ $$$${If}\:\:\:\:\:\mu_{\mathrm{1}} \neq\mathrm{0}\:,\:\mu_{\mathrm{2}} \neq\mathrm{0}\: \\ $$$${f}_{\mathrm{2}} =\mu_{\mathrm{2}} {N}_{\mathrm{2}} ={N}_{\mathrm{1}} \:\:\:....\left({i}\right) \\ $$$${f}_{\mathrm{1}} +{N}_{\mathrm{2}} =\mu_{\mathrm{1}} {N}_{\mathrm{1}} +{N}_{\mathrm{2}} ={mg}\:\:\: \\ $$$$\Rightarrow\:\:\:\left(\mu_{\mathrm{1}} \mu_{\mathrm{2}} +\mathrm{1}\right){N}_{\mathrm{2}} ={mg} \\ $$$$\:\:\:\:\:\:\:\:{N}_{\mathrm{2}} =\frac{{mg}}{\mathrm{1}+\mu_{\mathrm{1}} \mu_{\mathrm{2}} }\: \\ $$$${considering}\:\tau{orque}\:{about}\:{centre}: \\ $$$${N}_{\mathrm{2}} \left(\frac{{l}}{\mathrm{2}}\right)\mathrm{cos}\:\theta={f}_{\mathrm{2}} \left(\frac{{l}}{\mathrm{2}}\right)\mathrm{sin}\:\theta+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}_{\mathrm{1}} \left(\frac{{l}}{\mathrm{2}}\right)\mathrm{cos}\:\theta+{N}_{\mathrm{1}} \left(\frac{{l}}{\mathrm{2}}\right)\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\:{N}_{\mathrm{2}} \left(\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta\right)={N}_{\mathrm{1}} \left(\mu_{\mathrm{1}} +\mathrm{tan}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({iii}\right) \\ $$$$\Rightarrow\:{If}\:\mu_{\mathrm{1}} =\mathrm{0}\:,\:\mu_{\mathrm{2}} \neq\mathrm{0}\:\:\:{then} \\ $$$${from}\:\left({ii}\right)\:{we}\:{get}\:{N}_{\mathrm{2}} ={mg},\:{and} \\ $$$${N}_{\mathrm{1}} =\mu_{\mathrm{2}} {mg}\:.\:{Then}\:{from}\:\left({iii}\right)\:{we}\:{get} \\ $$$$\:\:\:\:{mg}\left(\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta\right)={N}_{\mathrm{1}} \mathrm{tan}\:\theta \\ $$$$\Rightarrow\:\:\:{mg}−{N}_{\mathrm{1}} \mathrm{tan}\:\theta={N}_{\mathrm{1}} \mathrm{tan}\:\theta \\ $$$${or}\:\:\:\:\:\:{N}_{\mathrm{1}} \mathrm{tan}\:\theta=\:\frac{{mg}}{\mathrm{2}}\:. \\ $$$${If}\:\:\mu_{\mathrm{1}} \neq\mathrm{0}\:,\:\mu_{\mathrm{2}} \:=\mathrm{0}\:\: \\ $$$${for}\:{the}\:{about}\:{to}\:{slip}\:{case} \\ $$$${f}_{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:\:\:{N}_{\mathrm{1}} =\mathrm{0}\:\:,\:\theta=\frac{\pi}{\mathrm{2}} \\ $$$${N}_{\mathrm{2}} ={mg}\:. \\ $$$${Hence}\:\:\left(\mathrm{3}\right),\:\left(\mathrm{4}\right)\:{are}\:{correct}\:. \\ $$

Commented by Tinkutara last updated on 19/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com