Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 22574 by Tinkutara last updated on 20/Oct/17

The system is initially at origin and is  moving with a velocity (3 m/s) k^∧ . A  force (120t newton) i^∧  acts on mass m_2 ,  where t is time in seconds.  The man throws a light ball, at the  instant when m_1  starts slipping on m_2 ,  with a velocity 5 m/s vertically up w.r.t  himself. Taking the masses of blocks  and man as 60 kg each and assuming  that the man never slips on m_2 , find  (a) The time at which man throws the  ball and  (b) The coordinates of the point where  ball lands. Neglect the dimensions of  the system. (g = 10 m/s^2 )

$$\mathrm{The}\:\mathrm{system}\:\mathrm{is}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{origin}\:\mathrm{and}\:\mathrm{is} \\ $$$$\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\left(\mathrm{3}\:\mathrm{m}/\mathrm{s}\right)\:\overset{\wedge} {{k}}.\:\mathrm{A} \\ $$$$\mathrm{force}\:\left(\mathrm{120}{t}\:\mathrm{newton}\right)\:\overset{\wedge} {{i}}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{mass}\:{m}_{\mathrm{2}} , \\ $$$$\mathrm{where}\:{t}\:\mathrm{is}\:\mathrm{time}\:\mathrm{in}\:\mathrm{seconds}. \\ $$$$\mathrm{The}\:\mathrm{man}\:\mathrm{throws}\:\mathrm{a}\:\mathrm{light}\:\mathrm{ball},\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{instant}\:\mathrm{when}\:{m}_{\mathrm{1}} \:\mathrm{starts}\:\mathrm{slipping}\:\mathrm{on}\:{m}_{\mathrm{2}} , \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{5}\:\mathrm{m}/\mathrm{s}\:\mathrm{vertically}\:\mathrm{up}\:\mathrm{w}.\mathrm{r}.\mathrm{t} \\ $$$$\mathrm{himself}.\:\mathrm{Taking}\:\mathrm{the}\:\mathrm{masses}\:\mathrm{of}\:\mathrm{blocks} \\ $$$$\mathrm{and}\:\mathrm{man}\:\mathrm{as}\:\mathrm{60}\:\mathrm{kg}\:\mathrm{each}\:\mathrm{and}\:\mathrm{assuming} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{man}\:\mathrm{never}\:\mathrm{slips}\:\mathrm{on}\:{m}_{\mathrm{2}} ,\:\mathrm{find} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{The}\:\mathrm{time}\:\mathrm{at}\:\mathrm{which}\:\mathrm{man}\:\mathrm{throws}\:\mathrm{the} \\ $$$$\mathrm{ball}\:\mathrm{and} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{where} \\ $$$$\mathrm{ball}\:\mathrm{lands}.\:\mathrm{Neglect}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{system}.\:\left({g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$

Commented by Tinkutara last updated on 20/Oct/17

Answered by Sahib singh last updated on 21/Oct/17

    if        m_1 = m_2 = m_(man)   v_(initial)  = 3 ^  k ^�   m/s   μ = 0.2   ⇒ a_( maximum of m_2 )  = (F_(friction) /m_2 )  = (((60×0.2×10)i ^� )/(60)) m/s^2   =2 i ^�  m/s^2   ⇒ when F = 360 i ^�  N  as total mass is 180 kg  ⇒ at   t = 3 s  along x axis   F = 120 t  ⇒ (dp/dt) = 120 t  ⇒ dp = 120 t dt  ⇒ ∫_0 ^( v)   dp = ∫_(0 ) ^( 3)  120 t dt  ⇒ mΔv = 60 × 9  ⇒ Δv = ((60×9)/(180)) = 3 i ^� m/s  ⇒ v_(man) = 3 i ^�   &   (dx/dt) = (t^2 /3)  ⇒ x_(at  t = 3)  = 3   &   v_z  = 3   ⇒ z_(at  t = 3)  = 9  ⇒ r_(ball initially) ^→ = 3i ^� +9k ^�     ⇒v_(horizonral of ball ) =( 3i ^� +3k ^� )m/s  ⇒∣v_(horizontal) ∣ = 3(√(2 ))  ⇒ Range = ((2×∣v_(vertical) ∣×∣v_(horizontal) ∣)/g)  ⇒ R = ((2×5×3(√2))/(10))  ⇒ R(in meters) = 3(√2)  ⇒ as the horizontal velocity  had direction (((3i ^� + 3k ^� )/(3(√2))))  ⇒ R^(→ )  will also have same  direction  ⇒ change in position vector of the    ball  r_(final) ^→ − r_(initial) ^→  =(3 i ^� + 3 k ^� ) m   ⇒r_(final) ^→ = (6 i ^�  + 9 k ^� )m

$$ \\ $$$$ \\ $$$${if}\:\:\:\:\:\:\:\:{m}_{\mathrm{1}} =\:{m}_{\mathrm{2}} =\:{m}_{{man}} \\ $$$${v}_{{initial}} \:=\:\mathrm{3}\overset{\:} {\:}{k}\hat {\:}\:\:{m}/{s}\: \\ $$$$\mu\:=\:\mathrm{0}.\mathrm{2}\: \\ $$$$\Rightarrow\:{a}_{\:{maximum}\:{of}\:{m}_{\mathrm{2}} } \:=\:\frac{{F}_{{friction}} }{{m}_{\mathrm{2}} } \\ $$$$=\:\frac{\left(\mathrm{60}×\mathrm{0}.\mathrm{2}×\mathrm{10}\right){i}\hat {\:}}{\mathrm{60}}\:{m}/{s}^{\mathrm{2}} \\ $$$$=\mathrm{2}\:{i}\hat {\:}\:{m}/{s}^{\mathrm{2}} \\ $$$$\Rightarrow\:{when}\:{F}\:=\:\mathrm{360}\:{i}\hat {\:}\:{N} \\ $$$${as}\:{total}\:{mass}\:{is}\:\mathrm{180}\:{kg} \\ $$$$\Rightarrow\:{at}\:\:\:{t}\:=\:\mathrm{3}\:{s} \\ $$$${along}\:{x}\:{axis} \\ $$$$\:{F}\:=\:\mathrm{120}\:{t} \\ $$$$\Rightarrow\:\frac{{dp}}{{dt}}\:=\:\mathrm{120}\:{t} \\ $$$$\Rightarrow\:{dp}\:=\:\mathrm{120}\:{t}\:{dt} \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\:{v}} \:\:{dp}\:=\:\int_{\mathrm{0}\:} ^{\:\mathrm{3}} \:\mathrm{120}\:{t}\:{dt} \\ $$$$\Rightarrow\:{m}\Delta{v}\:=\:\mathrm{60}\:×\:\mathrm{9} \\ $$$$\Rightarrow\:\Delta{v}\:=\:\frac{\mathrm{60}×\mathrm{9}}{\mathrm{180}}\:=\:\mathrm{3}\:{i}\hat {\:}{m}/{s} \\ $$$$\Rightarrow\:{v}_{{man}} =\:\mathrm{3}\:{i}\hat {\:} \\ $$$$\& \\ $$$$\:\frac{{dx}}{{dt}}\:=\:\frac{{t}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\:{x}_{{at}\:\:{t}\:=\:\mathrm{3}} \:=\:\mathrm{3}\: \\ $$$$\&\: \\ $$$${v}_{{z}} \:=\:\mathrm{3}\: \\ $$$$\Rightarrow\:{z}_{{at}\:\:{t}\:=\:\mathrm{3}} \:=\:\mathrm{9} \\ $$$$\Rightarrow\:\overset{\rightarrow} {{r}}_{{ball}\:{initially}} =\:\mathrm{3}{i}\hat {\:}+\mathrm{9}{k}\hat {\:} \\ $$$$ \\ $$$$\Rightarrow{v}_{{horizonral}\:{of}\:{ball}\:} =\left(\:\mathrm{3}{i}\hat {\:}+\mathrm{3}{k}\hat {\:}\right){m}/{s} \\ $$$$\Rightarrow\mid{v}_{{horizontal}} \mid\:=\:\mathrm{3}\sqrt{\mathrm{2}\:} \\ $$$$\Rightarrow\:{Range}\:=\:\frac{\mathrm{2}×\mid{v}_{{vertical}} \mid×\mid{v}_{{horizontal}} \mid}{{g}} \\ $$$$\Rightarrow\:{R}\:=\:\frac{\mathrm{2}×\mathrm{5}×\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{10}} \\ $$$$\Rightarrow\:{R}\left({in}\:{meters}\right)\:=\:\mathrm{3}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\:{as}\:{the}\:{horizontal}\:{velocity} \\ $$$${had}\:{direction}\:\left(\frac{\mathrm{3}{i}\hat {\:}+\:\mathrm{3}{k}\hat {\:}}{\mathrm{3}\sqrt{\mathrm{2}}}\right) \\ $$$$\Rightarrow\:\overset{\rightarrow\:} {{R}}\:{will}\:{also}\:{have}\:{same} \\ $$$${direction} \\ $$$$\Rightarrow\:{change}\:{in}\:{position}\:{vector}\:{of}\:{the}\: \\ $$$$\:{ball} \\ $$$$\overset{\rightarrow} {{r}}_{{final}} −\:\overset{\rightarrow} {{r}}_{{initial}} \:=\left(\mathrm{3}\:{i}\hat {\:}+\:\mathrm{3}\:{k}\hat {\:}\right)\:{m}\: \\ $$$$\Rightarrow\overset{\rightarrow} {{r}}_{{final}} =\:\left(\mathrm{6}\:{i}\hat {\:}\:+\:\mathrm{9}\:{k}\hat {\:}\right){m} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Sahib singh last updated on 21/Oct/17

this is wrong because that  external force is not   accelerating block m_2 .  Static frictional force is  accelerating the block.  theregore, I solved for

$${this}\:{is}\:{wrong}\:{because}\:{that} \\ $$$${external}\:{force}\:{is}\:{not}\: \\ $$$${accelerating}\:{block}\:{m}_{\mathrm{2}} . \\ $$$${Static}\:{frictional}\:{force}\:{is} \\ $$$${accelerating}\:{the}\:{block}. \\ $$$${theregore},\:{I}\:{solved}\:{for} \\ $$

Commented by Tinkutara last updated on 21/Oct/17

(3,0,3) is wrong as you can check in the  Section-H.

$$\left(\mathrm{3},\mathrm{0},\mathrm{3}\right)\:\mathrm{is}\:\mathrm{wrong}\:\mathrm{as}\:\mathrm{you}\:\mathrm{can}\:\mathrm{check}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{Section}-\mathrm{H}. \\ $$

Commented by Sahib singh last updated on 21/Oct/17

ok.i will check

$${ok}.{i}\:{will}\:{check} \\ $$

Commented by Sahib singh last updated on 21/Oct/17

oops! i made two mistakes.  will rectify  now.

$${oops}!\:{i}\:{made}\:{two}\:{mistakes}. \\ $$$${will}\:{rectify}\:\:{now}. \\ $$

Commented by Sahib singh last updated on 21/Oct/17

maximum acceleration  of the block due to limiting  friction.And since m_2   is about to slip ⇒the whole  system is having same   acceleration at this instant.  Now we know the acceleration  and mass we already know  ⇒ we can calculate the force  on system.

$${maximum}\:{acceleration} \\ $$$${of}\:{the}\:{block}\:{due}\:{to}\:{limiting} \\ $$$${friction}.{And}\:{since}\:{m}_{\mathrm{2}} \\ $$$${is}\:{about}\:{to}\:{slip}\:\Rightarrow{the}\:{whole} \\ $$$${system}\:{is}\:{having}\:{same}\: \\ $$$${acceleration}\:{at}\:{this}\:{instant}. \\ $$$${Now}\:{we}\:{know}\:{the}\:{acceleration} \\ $$$${and}\:{mass}\:{we}\:{already}\:{know} \\ $$$$\Rightarrow\:{we}\:{can}\:{calculate}\:{the}\:{force} \\ $$$${on}\:{system}. \\ $$$$ \\ $$$$ \\ $$

Commented by Tinkutara last updated on 21/Oct/17

Thank you Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Commented by Sahib singh last updated on 21/Oct/17

now its fine.

$${now}\:{its}\:{fine}. \\ $$

Commented by Tinkutara last updated on 21/Oct/17

But since we need acceleration of m_2 ,  so force÷mass of m_2 =acceleration of  m_2 . So ((120t)/(60))=2⇒t=1 s. Why this is  wrong?

$${But}\:{since}\:{we}\:{need}\:{acceleration}\:{of}\:{m}_{\mathrm{2}} , \\ $$$${so}\:{force}\boldsymbol{\div}{mass}\:{of}\:{m}_{\mathrm{2}} ={acceleration}\:{of} \\ $$$${m}_{\mathrm{2}} .\:{So}\:\frac{\mathrm{120}{t}}{\mathrm{60}}=\mathrm{2}\Rightarrow{t}=\mathrm{1}\:{s}.\:{Why}\:{this}\:{is} \\ $$$${wrong}? \\ $$

Commented by Sahib singh last updated on 21/Oct/17

You are welcome :)

$$\left.{You}\:{are}\:{welcome}\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com