Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 22576 by ajfour last updated on 20/Oct/17

Commented by ajfour last updated on 20/Oct/17

Q. 22536 (Alternate solution)

$${Q}.\:\mathrm{22536}\:\left({Alternate}\:{solution}\right) \\ $$

Answered by ajfour last updated on 20/Oct/17

△PQI∼△ABC  (first diagram)  So ((PQ)/(AB))=(r/(ACsin A))  ⇒  r(cot A+cot B)=((cr)/(bsin A))  or   cot A+cot B=(c/(bsin A))  we know ((sin A)/a)=((sin B)/b)=((sin C)/c)=(1/(2R))  so  cot A+cot B=((2cR)/(ab))      2Σcot A=2R((c/(ab))+(a/(bc))+(b/(ca)))  or   Σcot A=((R(a^2 +b^2 +c^2 ))/(abc)) ...(i)    From second diagram:        2×(1/2)×r×rΣcot (A/2)=△  ⇒     r^2 Σcot (A/2)=△   ......(ii)  and  (1/2)c×bsin A=△  or   ((bc)/2)×(a/(2R))=△  ⇒  ((abc)/(4R))=△ ..(iii)   and     rΣcot (A/2)=x+y+z  ⇒     rΣcot (A/2)=((a+b+c)/2)    ....(iv)  squaring (iv)and dividing by ΣcotA ,  ⇒   ((r^2 (Σcot (A/2))^2 )/(Σcot A))=(((a+b+c)^2 )/(4Σcot A))  using (ii) and (i) in eqn. above         (((Σcot (A/2))△)/(Σcot A))=(((a+b+c)^2 )/((4R(a^2 +b^2 +c^2 ))/(abc)))   Now using eqn.(iii):  abc=4△R     ((Σcot (A/2))/(Σcot A)) =(((a+b+c)^2 )/(a^2 +b^2 +c^2 ))  .

$$\bigtriangleup{PQI}\sim\bigtriangleup{ABC}\:\:\left({first}\:{diagram}\right) \\ $$$${So}\:\frac{{PQ}}{{AB}}=\frac{{r}}{{AC}\mathrm{sin}\:{A}} \\ $$$$\Rightarrow\:\:{r}\left(\mathrm{cot}\:{A}+\mathrm{cot}\:{B}\right)=\frac{{cr}}{{b}\mathrm{sin}\:{A}} \\ $$$${or}\:\:\:\mathrm{cot}\:{A}+\mathrm{cot}\:{B}=\frac{{c}}{{b}\mathrm{sin}\:{A}} \\ $$$${we}\:{know}\:\frac{\mathrm{sin}\:{A}}{{a}}=\frac{\mathrm{sin}\:{B}}{{b}}=\frac{\mathrm{sin}\:{C}}{{c}}=\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$${so}\:\:\mathrm{cot}\:{A}+\mathrm{cot}\:{B}=\frac{\mathrm{2}{cR}}{{ab}} \\ $$$$\:\:\:\:\mathrm{2}\Sigma\mathrm{cot}\:{A}=\mathrm{2}{R}\left(\frac{{c}}{{ab}}+\frac{{a}}{{bc}}+\frac{{b}}{{ca}}\right) \\ $$$${or}\:\:\:\Sigma\mathrm{cot}\:{A}=\frac{{R}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{{abc}}\:...\left({i}\right) \\ $$$$\:\:{From}\:{second}\:{diagram}: \\ $$$$\:\:\:\:\:\:\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}×{r}×{r}\Sigma\mathrm{cot}\:\frac{{A}}{\mathrm{2}}=\bigtriangleup \\ $$$$\Rightarrow\:\:\:\:\:{r}^{\mathrm{2}} \Sigma\mathrm{cot}\:\frac{{A}}{\mathrm{2}}=\bigtriangleup\:\:\:......\left({ii}\right) \\ $$$${and}\:\:\frac{\mathrm{1}}{\mathrm{2}}{c}×{b}\mathrm{sin}\:{A}=\bigtriangleup \\ $$$${or}\:\:\:\frac{{bc}}{\mathrm{2}}×\frac{{a}}{\mathrm{2}{R}}=\bigtriangleup\:\:\Rightarrow\:\:\frac{{abc}}{\mathrm{4}{R}}=\bigtriangleup\:..\left({iii}\right) \\ $$$$\:{and}\:\:\:\:\:{r}\Sigma\mathrm{cot}\:\frac{{A}}{\mathrm{2}}={x}+{y}+{z} \\ $$$$\Rightarrow\:\:\:\:\:{r}\Sigma\mathrm{cot}\:\frac{{A}}{\mathrm{2}}=\frac{{a}+{b}+{c}}{\mathrm{2}}\:\:\:\:....\left({iv}\right) \\ $$$${squaring}\:\left({iv}\right){and}\:{dividing}\:{by}\:\Sigma{cotA}\:, \\ $$$$\Rightarrow\:\:\:\frac{{r}^{\mathrm{2}} \left(\Sigma\mathrm{cot}\:\frac{{A}}{\mathrm{2}}\right)^{\mathrm{2}} }{\Sigma\mathrm{cot}\:{A}}=\frac{\left({a}+{b}+{c}\right)^{\mathrm{2}} }{\mathrm{4}\Sigma\mathrm{cot}\:{A}} \\ $$$${using}\:\left({ii}\right)\:{and}\:\left({i}\right)\:{in}\:{eqn}.\:{above} \\ $$$$\:\:\:\:\:\:\:\frac{\left(\Sigma\mathrm{cot}\:\frac{{A}}{\mathrm{2}}\right)\bigtriangleup}{\Sigma\mathrm{cot}\:{A}}=\frac{\left({a}+{b}+{c}\right)^{\mathrm{2}} }{\frac{\mathrm{4}{R}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{{abc}}} \\ $$$$\:{Now}\:{using}\:{eqn}.\left({iii}\right):\:\:{abc}=\mathrm{4}\bigtriangleup{R} \\ $$$$\:\:\:\frac{\Sigma\mathrm{cot}\:\frac{{A}}{\mathrm{2}}}{\Sigma\mathrm{cot}\:{A}}\:=\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} }\:\:. \\ $$

Commented by NECx last updated on 20/Oct/17

thanks boss

$${thanks}\:{boss} \\ $$

Commented by math solver last updated on 20/Oct/17

+1 :)

$$\left.+\mathrm{1}\::\right)\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com