Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 22649 by ajfour last updated on 21/Oct/17

Commented by ajfour last updated on 21/Oct/17

solution to Q.22599

$${solution}\:{to}\:{Q}.\mathrm{22599} \\ $$

Answered by ajfour last updated on 21/Oct/17

PR^2 =BP^( 2) +BR^( 2) −2BP.BRcos B  PR^( 2) =a^2 cos^2 B+c^2 cos^2 B−2accos^3 B           =(cos^2 B)(a^2 +c^2 −2accos B)  ⇒  PR^( 2) =b^2 cos^2 B  and if ∠A, ∠B, ∠C are all acute  as is the case in Q.22599  (a=4, b=6, c=5 ) we get  PR =bcos B  PQ =ccos C  QR =acos A  Ar(△ABC)= Ar(△PBR)                             +Ar(△PCQ)                             +Ar(△AQR)                             +Ar(△PQR)  ⇒  △_(ABC) =△_(ABC) (cos^2 B+cos^2 C+                                  cos^2 A)+△_(PQR)   ⇒  (△_(PQR) /△_(ABC) ) = 1−(cos^2 A+cos^2 B+                                                +cos^2 C)             for a=4, b=6, c=5  we get  cos A=((36+25−16)/(60))= (3/4)                cos B =((16+25−36)/(40))= (1/8)                cos C =((16+36−25)/(48)) =(9/(16))   So  (△_(PQR) /△_(ABC) ) =1−((9/(16))+(1/(64))+((81)/(256)))                        = 1−(((144+4+81)/(256)))                        = ((27)/(256))  or  (△_(ABC) /△_(PQR) )  = ((256)/(27)) =9((13)/(27)) ≈ 9.48 .

$${PR}^{\mathrm{2}} ={BP}^{\:\mathrm{2}} +{BR}^{\:\mathrm{2}} −\mathrm{2}{BP}.{BR}\mathrm{cos}\:{B} \\ $$$${PR}^{\:\mathrm{2}} ={a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} {B}+{c}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} {B}−\mathrm{2}{ac}\mathrm{cos}\:^{\mathrm{3}} {B} \\ $$$$\:\:\:\:\:\:\:\:\:=\left(\mathrm{cos}\:^{\mathrm{2}} {B}\right)\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{ac}\mathrm{cos}\:{B}\right) \\ $$$$\Rightarrow\:\:{PR}^{\:\mathrm{2}} ={b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} {B} \\ $$$${and}\:{if}\:\angle{A},\:\angle{B},\:\angle{C}\:{are}\:{all}\:{acute} \\ $$$${as}\:{is}\:{the}\:{case}\:{in}\:{Q}.\mathrm{22599} \\ $$$$\left({a}=\mathrm{4},\:{b}=\mathrm{6},\:{c}=\mathrm{5}\:\right)\:{we}\:{get} \\ $$$$\boldsymbol{{PR}}\:=\boldsymbol{{b}}\mathrm{cos}\:\boldsymbol{{B}} \\ $$$$\boldsymbol{{PQ}}\:=\boldsymbol{{c}}\mathrm{cos}\:\boldsymbol{{C}} \\ $$$$\boldsymbol{{QR}}\:=\boldsymbol{{a}}\mathrm{cos}\:\boldsymbol{{A}} \\ $$$${Ar}\left(\bigtriangleup{ABC}\right)=\:{Ar}\left(\bigtriangleup{PBR}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{Ar}\left(\bigtriangleup{PCQ}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{Ar}\left(\bigtriangleup{AQR}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{Ar}\left(\bigtriangleup{PQR}\right) \\ $$$$\Rightarrow\:\:\bigtriangleup_{{ABC}} =\bigtriangleup_{{ABC}} \left(\mathrm{cos}\:^{\mathrm{2}} {B}+\mathrm{cos}\:^{\mathrm{2}} {C}+\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} {A}\right)+\bigtriangleup_{{PQR}} \\ $$$$\Rightarrow\:\:\frac{\bigtriangleup_{{PQR}} }{\bigtriangleup_{{ABC}} }\:=\:\mathrm{1}−\left(\mathrm{cos}\:^{\mathrm{2}} {A}+\mathrm{cos}\:^{\mathrm{2}} {B}+\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{cos}\:^{\mathrm{2}} {C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{for}\:{a}=\mathrm{4},\:{b}=\mathrm{6},\:{c}=\mathrm{5} \\ $$$${we}\:{get}\:\:\mathrm{cos}\:{A}=\frac{\mathrm{36}+\mathrm{25}−\mathrm{16}}{\mathrm{60}}=\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:{B}\:=\frac{\mathrm{16}+\mathrm{25}−\mathrm{36}}{\mathrm{40}}=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:{C}\:=\frac{\mathrm{16}+\mathrm{36}−\mathrm{25}}{\mathrm{48}}\:=\frac{\mathrm{9}}{\mathrm{16}} \\ $$$$\:{So}\:\:\frac{\bigtriangleup_{{PQR}} }{\bigtriangleup_{{ABC}} }\:=\mathrm{1}−\left(\frac{\mathrm{9}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{64}}+\frac{\mathrm{81}}{\mathrm{256}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}−\left(\frac{\mathrm{144}+\mathrm{4}+\mathrm{81}}{\mathrm{256}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{27}}{\mathrm{256}} \\ $$$${or}\:\:\frac{\bigtriangleup_{{ABC}} }{\bigtriangleup_{{PQR}} }\:\:=\:\frac{\mathrm{256}}{\mathrm{27}}\:=\mathrm{9}\frac{\mathrm{13}}{\mathrm{27}}\:\approx\:\mathrm{9}.\mathrm{48}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 21/Oct/17

There is a very short method to  prove that r=(R/2).  We can find the angles of ΔPQR as:  ∠P=π−2A  ∠Q=π−2B  ∠R=π−2C  In original triangle let R_1 =(b/(2sin B))  Let R_2  be circumradius of pedal  triangle. Then since we already  found the sides, so  R_2 =((PR)/(2sin Q))=((bcos B)/(2sin 2B))=(b/(4sin B))=(R_1 /2)  Hence proved.  I only forgot how to find the sides of  pedal triangle. Then I recalled from  here. Thanks very much ajfour Sir!

$${There}\:{is}\:{a}\:{very}\:{short}\:{method}\:{to} \\ $$$${prove}\:{that}\:{r}=\frac{{R}}{\mathrm{2}}. \\ $$$${We}\:{can}\:{find}\:{the}\:{angles}\:{of}\:\Delta{PQR}\:{as}: \\ $$$$\angle{P}=\pi−\mathrm{2}{A} \\ $$$$\angle{Q}=\pi−\mathrm{2}{B} \\ $$$$\angle{R}=\pi−\mathrm{2}{C} \\ $$$${In}\:{original}\:{triangle}\:{let}\:{R}_{\mathrm{1}} =\frac{{b}}{\mathrm{2sin}\:{B}} \\ $$$${Let}\:{R}_{\mathrm{2}} \:{be}\:{circumradius}\:{of}\:{pedal} \\ $$$${triangle}.\:{Then}\:{since}\:{we}\:{already} \\ $$$${found}\:{the}\:{sides},\:{so} \\ $$$${R}_{\mathrm{2}} =\frac{{PR}}{\mathrm{2sin}\:{Q}}=\frac{{b}\mathrm{cos}\:{B}}{\mathrm{2sin}\:\mathrm{2}{B}}=\frac{{b}}{\mathrm{4sin}\:{B}}=\frac{{R}_{\mathrm{1}} }{\mathrm{2}} \\ $$$${Hence}\:{proved}. \\ $$$${I}\:{only}\:{forgot}\:{how}\:{to}\:{find}\:{the}\:{sides}\:{of} \\ $$$${pedal}\:{triangle}.\:{Then}\:{I}\:{recalled}\:{from} \\ $$$${here}.\:{Thanks}\:{very}\:{much}\:{ajfour}\:{Sir}! \\ $$

Commented by ajfour last updated on 21/Oct/17

Very nice ; thanks .

$${Very}\:{nice}\:;\:{thanks}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com