Question Number 2272 by Rasheed Soomro last updated on 12/Nov/15

f(((−1)/(x−1)))+f(((x−1)/x))=((2x−1)/x)  f(x)=?  Stepwise process is required.

Answered by Rasheed Soomro last updated on 16/Nov/15

f(((−1)/(x−1)))+f(((x−1)/x))=((2x−1)/x)  In order to get equation involving f(x),  we have to replace  ((−1)/(x−1)) (or ((x−1)/x) ) by  x  :                     Let      ((−1)/(x−1))=y⇒x=((y−1)/y)    f(((−1)/(x−1)))+f(((x−1)/x))=((2x−1)/x)                                    ⇒f(y)+f(((((y−1)/y)−1)/((y−1)/y)))=((2(((y−1)/y))−1)/((y−1)/y))                      ⇒f(y)+f(((−1)/(y−1))) =((y−2)/(y−1))                      ⇒f(x)+f(((−1)/(x−1))) =((x−2)/(x−1))    [replacing y by x ]                    ⇒f(x)=((x−2)/(x−1))−f(((−1)/(x−1)))........................(1)     f(((−1)/(x−1)))=((((−1)/(x−1))−2)/(((−1)/(x−1))−1))−f(((−1)/(((−1)/(x−1))−1)))    [ replace x by ((−1)/(x−1)) in (1)]                     =((2x−1)/x)−f(((x−1)/x))    [ replace x by ((−1)/(x−1)) in (1)]    f(((x−1)/x))=((((x−1)/x)−2)/(((x−1)/x)−1))−f(((−1)/(((x−1)/x)−1)))   [replace x by ((x−1)/x) in (1) ]                      =x+1−f(x)   [replace x by ((x−1)/x) in (1) ]  −−−−−−−−−−−−−−−−−−−−−  From (1)  f(x)=((x−2)/(x−1))−f(((−1)/(x−1)))                                  =((x−2)/(x−1))−f(((−1)/(x−1)))                                  =((x−2)/(x−1))−(((2x−1)/x)−f(((x−1)/x)))                                  =((x−2)/(x−1))−((2x−1)/x)+x+1−f(x)                         2f(x)=((x−2)/(x−1))−((2x−1)/x)+x+1                          f(x)=(1/2)(((x−2)/(x−1))−((2x−1)/x)+x+1)