Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 2284 by Yozzi last updated on 13/Nov/15

Define a curve E by the parametric  equations                    x(t)=∫_(g_1 (t)) ^(h_1 (t)) f_1 (u)du                    y(t)=∫_(g_2 (t)) ^(h_2 (t)) f_2 (u)du  where h_1 ,g_1 ,h_2  and g_2  are differentiable  and both f_1  and f_2  are continuous.  Find the gradient, m, of the tangent  to E at the point N with parameter   value t (t≥0).  Let h_1 (t)=t,g_1 (t)=t^2 ,h_2 (t)=t^3 ,g_2 (t)=t^4   f_1 (u)=u^2  and f_2 (u)=u^3 . Find the   values of t when the tangent is   (i) vertical,  (ii) horizontal.  What are the equations of the tangents  in (i) and (ii)?

$${Define}\:{a}\:{curve}\:{E}\:{by}\:{the}\:{parametric} \\ $$$${equations} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\left({t}\right)=\int_{{g}_{\mathrm{1}} \left({t}\right)} ^{{h}_{\mathrm{1}} \left({t}\right)} {f}_{\mathrm{1}} \left({u}\right){du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\left({t}\right)=\int_{{g}_{\mathrm{2}} \left({t}\right)} ^{{h}_{\mathrm{2}} \left({t}\right)} {f}_{\mathrm{2}} \left({u}\right){du} \\ $$$${where}\:{h}_{\mathrm{1}} ,{g}_{\mathrm{1}} ,{h}_{\mathrm{2}} \:{and}\:{g}_{\mathrm{2}} \:{are}\:{differentiable} \\ $$$${and}\:{both}\:{f}_{\mathrm{1}} \:{and}\:{f}_{\mathrm{2}} \:{are}\:{continuous}. \\ $$$${Find}\:{the}\:{gradient},\:{m},\:{of}\:{the}\:{tangent} \\ $$$${to}\:{E}\:{at}\:{the}\:{point}\:{N}\:{with}\:{parameter}\: \\ $$$${value}\:{t}\:\left({t}\geqslant\mathrm{0}\right). \\ $$$${Let}\:{h}_{\mathrm{1}} \left({t}\right)={t},{g}_{\mathrm{1}} \left({t}\right)={t}^{\mathrm{2}} ,{h}_{\mathrm{2}} \left({t}\right)={t}^{\mathrm{3}} ,{g}_{\mathrm{2}} \left({t}\right)={t}^{\mathrm{4}} \\ $$$${f}_{\mathrm{1}} \left({u}\right)={u}^{\mathrm{2}} \:{and}\:{f}_{\mathrm{2}} \left({u}\right)={u}^{\mathrm{3}} .\:{Find}\:{the}\: \\ $$$${values}\:{of}\:{t}\:{when}\:{the}\:{tangent}\:{is}\: \\ $$$$\left({i}\right)\:{vertical}, \\ $$$$\left({ii}\right)\:{horizontal}. \\ $$$${What}\:{are}\:{the}\:{equations}\:{of}\:{the}\:{tangents} \\ $$$${in}\:\left({i}\right)\:{and}\:\left({ii}\right)? \\ $$$$ \\ $$

Commented by Yozzi last updated on 14/Nov/15

A consequence of the Fundamental  Theorem of Calculus is that, for   φ  being continuous , and both ψ and η  being differentiable,  (d/dx)∫_(η(x)) ^(ψ(x)) φ(z)dz=φ(ψ(x))ψ^′ (x)−φ(η(x))η^′ (x).    The Fundamental Theorem of Calculus  states that for f being continuous over  the interval a≤t≤b, with one given  any x∈[a,b], and we let F be a function  such that                         F(x)=∫_a ^x f(t)dt  then F^( ′) (x)=f(x).   It may interest you to prove the result  using this theorem before using the   result.

$${A}\:{consequence}\:{of}\:{the}\:{Fundamental} \\ $$$${Theorem}\:{of}\:{Calculus}\:{is}\:{that},\:{for}\: \\ $$$$\phi\:\:{being}\:{continuous}\:,\:{and}\:{both}\:\psi\:{and}\:\eta \\ $$$${being}\:{differentiable}, \\ $$$$\frac{{d}}{{dx}}\int_{\eta\left({x}\right)} ^{\psi\left({x}\right)} \phi\left({z}\right){dz}=\phi\left(\psi\left({x}\right)\right)\psi^{'} \left({x}\right)−\phi\left(\eta\left({x}\right)\right)\eta^{'} \left({x}\right). \\ $$$$ \\ $$$${The}\:{Fundamental}\:{Theorem}\:{of}\:{Calculus} \\ $$$${states}\:{that}\:{for}\:{f}\:{being}\:{continuous}\:{over} \\ $$$${the}\:{interval}\:{a}\leqslant{t}\leqslant{b},\:{with}\:{one}\:{given} \\ $$$${any}\:{x}\in\left[{a},{b}\right],\:{and}\:{we}\:{let}\:{F}\:{be}\:{a}\:{function} \\ $$$${such}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{F}\left({x}\right)=\int_{{a}} ^{{x}} {f}\left({t}\right){dt} \\ $$$${then}\:{F}^{\:'} \left({x}\right)={f}\left({x}\right).\: \\ $$$${It}\:{may}\:{interest}\:{you}\:{to}\:{prove}\:{the}\:{result} \\ $$$${using}\:{this}\:{theorem}\:{before}\:{using}\:{the}\: \\ $$$${result}. \\ $$

Answered by Yozzi last updated on 15/Nov/15

We need to find x^′ (t) and y^′ (t).   x^′ (t)=(d/dt)∫_(g_1 (t)) ^(h_1 (t)) f_1 (u)du. From comments,  x^′ (t)=f_1 (h_1 (t))h_1 ^′ (t)−f_1 (g_1 (t))g_1 ^′ (t)  Similarly, for y^′ (t)=(d/dt)∫_(g_2 (t)) ^(h_2 (t)) f_2 (u)du,  y^′ (t)=f_2 (h_2 (t))h_2 ^′ (t)−f_2 (g_2 (t))g_2 ^′ (t).  The gradient m of the tangent to E at the  point N with parameter value t (t≥0)  is then given by                              m=((y^′ (t))/(x^′ (t))).      m=((f_2 (h_2 (t))h_2 ^′ (t)−f_2 (g_2 (t))g_2 ^′ (t))/(f_1 (h_1 (t))h_1 ^′ (t)−f_1 (g_1 (t))g_1 ^′ (t))).  Given h_1 (t)=t,g_1 (t)=t^2 ,h_2 (t)=t^3 ,g_2 (t)=t^4   ⇒h_1 ^′ (t)=1, g_1 ^′ (t)=2t,h_2 ^′ (t)=3t^2 ,g_2 ^′ (t)=4t^3 .  ∵ f_1 (u)=u^2 ,f_2 (u)=u^3   m=(((t^3 )^3 ×3t^2 −(t^4 )^3 ×4t^3 )/((t)^2 ×1−(t^2 )^2 ×2t))      =((3t^(11) −4t^(15) )/(t^2 −2t^5 ))      =((t^(11) (3−4t^4 ))/(t^2 (1−2t^3 )))  m=((t^9 (3−4t^4 ))/(1−2t^3 ))  (i) If the tangent to E at N is vertical  ⇒m is undefined for some t.  This occurs if 1−2t^3 =0⇒t=2^(−(1/3)) .  (ii)If the tangent to E at N is horizontal,  ⇒m=0⇒t^9 (3−4t^4 )=0⇒t^9 =0 or 3−4t^4 =0.  t^9 =0⇒t=0.  3−4t^4 =0⇒t^4 =3/4⇒t=±((3/4))^(1/4) .  Since t≥0 at N⇒t=((3/4))^(1/4) .  t=0 ∨ t=((3/4))^(1/4) .

$${We}\:{need}\:{to}\:{find}\:{x}^{'} \left({t}\right)\:{and}\:{y}^{'} \left({t}\right).\: \\ $$$${x}^{'} \left({t}\right)=\frac{{d}}{{dt}}\int_{{g}_{\mathrm{1}} \left({t}\right)} ^{{h}_{\mathrm{1}} \left({t}\right)} {f}_{\mathrm{1}} \left({u}\right){du}.\:{From}\:{comments}, \\ $$$${x}^{'} \left({t}\right)={f}_{\mathrm{1}} \left({h}_{\mathrm{1}} \left({t}\right)\right){h}_{\mathrm{1}} ^{'} \left({t}\right)−{f}_{\mathrm{1}} \left({g}_{\mathrm{1}} \left({t}\right)\right){g}_{\mathrm{1}} ^{'} \left({t}\right) \\ $$$${Similarly},\:{for}\:{y}^{'} \left({t}\right)=\frac{{d}}{{dt}}\int_{{g}_{\mathrm{2}} \left({t}\right)} ^{{h}_{\mathrm{2}} \left({t}\right)} {f}_{\mathrm{2}} \left({u}\right){du}, \\ $$$${y}^{'} \left({t}\right)={f}_{\mathrm{2}} \left({h}_{\mathrm{2}} \left({t}\right)\right){h}_{\mathrm{2}} ^{'} \left({t}\right)−{f}_{\mathrm{2}} \left({g}_{\mathrm{2}} \left({t}\right)\right){g}_{\mathrm{2}} ^{'} \left({t}\right). \\ $$$${The}\:{gradient}\:{m}\:{of}\:{the}\:{tangent}\:{to}\:{E}\:{at}\:{the} \\ $$$${point}\:{N}\:{with}\:{parameter}\:{value}\:{t}\:\left({t}\geqslant\mathrm{0}\right) \\ $$$${is}\:{then}\:{given}\:{by} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}=\frac{{y}^{'} \left({t}\right)}{{x}^{'} \left({t}\right)}. \\ $$$$\:\:\:\:{m}=\frac{{f}_{\mathrm{2}} \left({h}_{\mathrm{2}} \left({t}\right)\right){h}_{\mathrm{2}} ^{'} \left({t}\right)−{f}_{\mathrm{2}} \left({g}_{\mathrm{2}} \left({t}\right)\right){g}_{\mathrm{2}} ^{'} \left({t}\right)}{{f}_{\mathrm{1}} \left({h}_{\mathrm{1}} \left({t}\right)\right){h}_{\mathrm{1}} ^{'} \left({t}\right)−{f}_{\mathrm{1}} \left({g}_{\mathrm{1}} \left({t}\right)\right){g}_{\mathrm{1}} ^{'} \left({t}\right)}. \\ $$$${Given}\:{h}_{\mathrm{1}} \left({t}\right)={t},{g}_{\mathrm{1}} \left({t}\right)={t}^{\mathrm{2}} ,{h}_{\mathrm{2}} \left({t}\right)={t}^{\mathrm{3}} ,{g}_{\mathrm{2}} \left({t}\right)={t}^{\mathrm{4}} \\ $$$$\Rightarrow{h}_{\mathrm{1}} ^{'} \left({t}\right)=\mathrm{1},\:{g}_{\mathrm{1}} ^{'} \left({t}\right)=\mathrm{2}{t},{h}_{\mathrm{2}} ^{'} \left({t}\right)=\mathrm{3}{t}^{\mathrm{2}} ,{g}_{\mathrm{2}} ^{'} \left({t}\right)=\mathrm{4}{t}^{\mathrm{3}} . \\ $$$$\because\:{f}_{\mathrm{1}} \left({u}\right)={u}^{\mathrm{2}} ,{f}_{\mathrm{2}} \left({u}\right)={u}^{\mathrm{3}} \\ $$$${m}=\frac{\left({t}^{\mathrm{3}} \right)^{\mathrm{3}} ×\mathrm{3}{t}^{\mathrm{2}} −\left({t}^{\mathrm{4}} \right)^{\mathrm{3}} ×\mathrm{4}{t}^{\mathrm{3}} }{\left({t}\right)^{\mathrm{2}} ×\mathrm{1}−\left({t}^{\mathrm{2}} \right)^{\mathrm{2}} ×\mathrm{2}{t}} \\ $$$$\:\:\:\:=\frac{\mathrm{3}{t}^{\mathrm{11}} −\mathrm{4}{t}^{\mathrm{15}} }{{t}^{\mathrm{2}} −\mathrm{2}{t}^{\mathrm{5}} } \\ $$$$\:\:\:\:=\frac{{t}^{\mathrm{11}} \left(\mathrm{3}−\mathrm{4}{t}^{\mathrm{4}} \right)}{{t}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{2}{t}^{\mathrm{3}} \right)} \\ $$$${m}=\frac{{t}^{\mathrm{9}} \left(\mathrm{3}−\mathrm{4}{t}^{\mathrm{4}} \right)}{\mathrm{1}−\mathrm{2}{t}^{\mathrm{3}} } \\ $$$$\left({i}\right)\:{If}\:{the}\:{tangent}\:{to}\:{E}\:{at}\:{N}\:{is}\:{vertical} \\ $$$$\Rightarrow{m}\:{is}\:{undefined}\:{for}\:{some}\:{t}. \\ $$$${This}\:{occurs}\:{if}\:\mathrm{1}−\mathrm{2}{t}^{\mathrm{3}} =\mathrm{0}\Rightarrow{t}=\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{3}}} . \\ $$$$\left({ii}\right){If}\:{the}\:{tangent}\:{to}\:{E}\:{at}\:{N}\:{is}\:{horizontal}, \\ $$$$\Rightarrow{m}=\mathrm{0}\Rightarrow{t}^{\mathrm{9}} \left(\mathrm{3}−\mathrm{4}{t}^{\mathrm{4}} \right)=\mathrm{0}\Rightarrow{t}^{\mathrm{9}} =\mathrm{0}\:{or}\:\mathrm{3}−\mathrm{4}{t}^{\mathrm{4}} =\mathrm{0}. \\ $$$${t}^{\mathrm{9}} =\mathrm{0}\Rightarrow{t}=\mathrm{0}. \\ $$$$\mathrm{3}−\mathrm{4}{t}^{\mathrm{4}} =\mathrm{0}\Rightarrow{t}^{\mathrm{4}} =\mathrm{3}/\mathrm{4}\Rightarrow{t}=\pm\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{4}} . \\ $$$${Since}\:{t}\geqslant\mathrm{0}\:{at}\:{N}\Rightarrow{t}=\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{4}} . \\ $$$${t}=\mathrm{0}\:\vee\:{t}=\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{4}} . \\ $$

Answered by Yozzi last updated on 15/Nov/15

Given the functions of h_1 ,g_1 ,h_2 ,g_2 ,f_(1 )   and f_2 , we have  x(t)=∫_t^2  ^( t) u^2 du=(u^3 /3)∣_t^2  ^t =((t^3 −t^6 )/3)  y(t)=∫_t^4  ^( t^3 ) u^3 du=(u^4 /4)∣_t^4  ^t^3  =((t^(12) −t^(16) )/4).  If the tangent is vertical at t=2^(−1/3) ,  we require an x−line.   ∴x(2^(−1/3) )=((2^(−1) −2^(−2) )/3)=(1/(12))  ⇒ equation of vertical tangent is x=(1/(12)).  If the tangnet is horizontal we have  a y−line. For t=0,y(0)=0.  ∴ the equation of the tangent is y=0.  For t=(3/4)^(1/4) ,  y((3/4)^(1/4) )=((0.75^3 −0.75^4 )/4)=((((27)/(64))−((81)/(256)))/4)  y((3/4)^(1/4) )=(1/4)×((108−81)/(256))=((27)/(1024))  The equation of the other horizontal  tangent is y=27/1024.

$${Given}\:{the}\:{functions}\:{of}\:{h}_{\mathrm{1}} ,{g}_{\mathrm{1}} ,{h}_{\mathrm{2}} ,{g}_{\mathrm{2}} ,{f}_{\mathrm{1}\:} \\ $$$${and}\:{f}_{\mathrm{2}} ,\:{we}\:{have} \\ $$$${x}\left({t}\right)=\int_{{t}^{\mathrm{2}} } ^{\:{t}} {u}^{\mathrm{2}} {du}=\frac{{u}^{\mathrm{3}} }{\mathrm{3}}\mid_{{t}^{\mathrm{2}} } ^{{t}} =\frac{{t}^{\mathrm{3}} −{t}^{\mathrm{6}} }{\mathrm{3}} \\ $$$${y}\left({t}\right)=\int_{{t}^{\mathrm{4}} } ^{\:{t}^{\mathrm{3}} } {u}^{\mathrm{3}} {du}=\frac{{u}^{\mathrm{4}} }{\mathrm{4}}\mid_{{t}^{\mathrm{4}} } ^{{t}^{\mathrm{3}} } =\frac{{t}^{\mathrm{12}} −{t}^{\mathrm{16}} }{\mathrm{4}}. \\ $$$${If}\:{the}\:{tangent}\:{is}\:{vertical}\:{at}\:{t}=\mathrm{2}^{−\mathrm{1}/\mathrm{3}} , \\ $$$${we}\:{require}\:{an}\:{x}−{line}.\: \\ $$$$\therefore{x}\left(\mathrm{2}^{−\mathrm{1}/\mathrm{3}} \right)=\frac{\mathrm{2}^{−\mathrm{1}} −\mathrm{2}^{−\mathrm{2}} }{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\Rightarrow\:{equation}\:{of}\:{vertical}\:{tangent}\:{is}\:{x}=\frac{\mathrm{1}}{\mathrm{12}}. \\ $$$${If}\:{the}\:{tangnet}\:{is}\:{horizontal}\:{we}\:{have} \\ $$$${a}\:{y}−{line}.\:{For}\:{t}=\mathrm{0},{y}\left(\mathrm{0}\right)=\mathrm{0}. \\ $$$$\therefore\:{the}\:{equation}\:{of}\:{the}\:{tangent}\:{is}\:{y}=\mathrm{0}. \\ $$$${For}\:{t}=\left(\mathrm{3}/\mathrm{4}\right)^{\mathrm{1}/\mathrm{4}} , \\ $$$${y}\left(\left(\mathrm{3}/\mathrm{4}\right)^{\mathrm{1}/\mathrm{4}} \right)=\frac{\mathrm{0}.\mathrm{75}^{\mathrm{3}} −\mathrm{0}.\mathrm{75}^{\mathrm{4}} }{\mathrm{4}}=\frac{\frac{\mathrm{27}}{\mathrm{64}}−\frac{\mathrm{81}}{\mathrm{256}}}{\mathrm{4}} \\ $$$${y}\left(\left(\mathrm{3}/\mathrm{4}\right)^{\mathrm{1}/\mathrm{4}} \right)=\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{108}−\mathrm{81}}{\mathrm{256}}=\frac{\mathrm{27}}{\mathrm{1024}} \\ $$$${The}\:{equation}\:{of}\:{the}\:{other}\:{horizontal} \\ $$$${tangent}\:{is}\:{y}=\mathrm{27}/\mathrm{1024}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com