Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 2286 by Filup last updated on 14/Nov/15

Can you evaluate:  (1/1)+(1/(1+(1/1)))+(1/(1+(1/(1+(1/1)))))+...+(1/(1+(1/(...))))

$$\mathrm{Can}\:\mathrm{you}\:\mathrm{evaluate}: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}}+...+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{...}} \\ $$

Commented by Yozzi last updated on 14/Nov/15

u_1 =(1/1), u_2 =(1/(1+(1/1)))=(1/(1+u_1 ))  u_3 =(1/(1+(1/(1+(1/1)))))=(1/(1+u_2 ))  u_4 =(1/(1+(1/(1+(1/(1+(1/1)))))))=(1/(1+u_3 ))  Recurrence equation for terms is  u_(n+1) =(1/(1+u_n )), u_1 =1,n≥1  u_1 =1  u_2 =(1/(1+u_1 ))=(1/2)  u_3 =(1/(1+u_2 ))=(1/(1+(1/2)))=(2/3)  u_4 =(1/(1+u_3 ))=(1/(1+(2/3)))=(3/5)  u_5 =(1/(1+u_4 ))=(1/(1+(3/5)))=(5/8)  u_6 =(1/(1+u_5 ))=(1/(1+(5/8)))=(8/(13))

$${u}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}},\:{u}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{1}} } \\ $$$${u}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}}=\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{2}} } \\ $$$${u}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}}}=\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{3}} } \\ $$$${Recurrence}\:{equation}\:{for}\:{terms}\:{is} \\ $$$${u}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{{n}} },\:{u}_{\mathrm{1}} =\mathrm{1},{n}\geqslant\mathrm{1} \\ $$$${u}_{\mathrm{1}} =\mathrm{1} \\ $$$${u}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${u}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${u}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${u}_{\mathrm{5}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}}=\frac{\mathrm{5}}{\mathrm{8}} \\ $$$${u}_{\mathrm{6}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{5}} }=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{5}}{\mathrm{8}}}=\frac{\mathrm{8}}{\mathrm{13}} \\ $$

Commented by Rasheed Soomro last updated on 17/Nov/15

 G^(OO) D  APPROACH!

$$\:\mathcal{G}^{\mathcal{OO}} \mathcal{D}\:\:\mathcal{APPROACH}! \\ $$

Commented by prakash jain last updated on 14/Nov/15

a_(n+1) =(1/(1+a_n ))  lim_(n→∞) a_n =((−1+(√5))/2)  Sum doesn′t converge.

$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+{a}_{{n}} } \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{Sum}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{converge}. \\ $$

Answered by 123456 last updated on 15/Nov/15

by the coments  u_(n+1) =(1/(1+u_n )),u_0 =1  claim 1:  u_n =(F_n /F_(n+1) )    F_n  are Fibonnaci numbers  proof:  F_(n+2) =F_(n+1) +F_n   for n=1  u_1 =(F_1 /F_2 )=(1/1)=1 (T)  suppose its truth for n, lets proof for n+  u_(n+1) =(1/(1+u_n ))=(1/(1+(F_n /F_(n+1) )))  =(1/((F_n +F_(n+1) )/F_(n+1) ))=(F_(n+1) /F_(n+2) )  ■  −−−−−−−−−−−−−  S=Σu_n   a necesary condition to Σu_n  exist is  u_n →0 as n→∞ (but not sulficient, 1/n→0 but Σ1/n diverge)  but the sum seem to be divergent  (F_(n+1) /F_n )→ϕ=((1+(√5))/2)  u_n =(F_n /F_(n+1) )=(1/(F_(n+1) /F_n ))→(1/ϕ)=(((√5)−1)/2)

$$\mathrm{by}\:\mathrm{the}\:\mathrm{coments} \\ $$$${u}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{{n}} },{u}_{\mathrm{0}} =\mathrm{1} \\ $$$$\mathrm{claim}\:\mathrm{1}: \\ $$$${u}_{{n}} =\frac{\mathrm{F}_{{n}} }{\mathrm{F}_{{n}+\mathrm{1}} }\:\:\:\:\mathrm{F}_{{n}} \:\mathrm{are}\:\mathrm{Fibonnaci}\:\mathrm{numbers} \\ $$$$\mathrm{proof}: \\ $$$$\mathrm{F}_{{n}+\mathrm{2}} =\mathrm{F}_{{n}+\mathrm{1}} +\mathrm{F}_{{n}} \\ $$$$\mathrm{for}\:{n}=\mathrm{1} \\ $$$${u}_{\mathrm{1}} =\frac{\mathrm{F}_{\mathrm{1}} }{\mathrm{F}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{1}}=\mathrm{1}\:\left(\mathrm{T}\right) \\ $$$$\mathrm{suppose}\:\mathrm{its}\:\mathrm{truth}\:\mathrm{for}\:{n},\:\mathrm{lets}\:\mathrm{proof}\:\mathrm{for}\:{n}+ \\ $$$${u}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+{u}_{{n}} }=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{F}_{{n}} }{\mathrm{F}_{{n}+\mathrm{1}} }} \\ $$$$=\frac{\mathrm{1}}{\frac{\mathrm{F}_{{n}} +\mathrm{F}_{{n}+\mathrm{1}} }{\mathrm{F}_{{n}+\mathrm{1}} }}=\frac{\mathrm{F}_{{n}+\mathrm{1}} }{\mathrm{F}_{{n}+\mathrm{2}} }\:\:\blacksquare \\ $$$$−−−−−−−−−−−−− \\ $$$$\mathrm{S}=\Sigma{u}_{{n}} \\ $$$$\mathrm{a}\:\mathrm{necesary}\:\mathrm{condition}\:\mathrm{to}\:\Sigma{u}_{{n}} \:\mathrm{exist}\:\mathrm{is} \\ $$$${u}_{{n}} \rightarrow\mathrm{0}\:\mathrm{as}\:{n}\rightarrow\infty\:\left(\mathrm{but}\:\mathrm{not}\:\mathrm{sulficient},\:\mathrm{1}/{n}\rightarrow\mathrm{0}\:\mathrm{but}\:\Sigma\mathrm{1}/{n}\:\mathrm{diverge}\right) \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{be}\:\mathrm{divergent} \\ $$$$\frac{\mathrm{F}_{{n}+\mathrm{1}} }{\mathrm{F}_{{n}} }\rightarrow\varphi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${u}_{{n}} =\frac{\mathrm{F}_{{n}} }{\mathrm{F}_{{n}+\mathrm{1}} }=\frac{\mathrm{1}}{\frac{\mathrm{F}_{{n}+\mathrm{1}} }{\mathrm{F}_{{n}} }}\rightarrow\frac{\mathrm{1}}{\varphi}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 15/Nov/15

lim_(n→∞) u_n =((−1+(√5))/2)  or ((1+(√5))/2)?

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{u}_{{n}} =\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:{or}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}? \\ $$

Commented by 123456 last updated on 15/Nov/15

(2/(1+(√5)))=((2(1−(√5)))/((1+(√5))(1−(√5))))=((2(1−(√5)))/(1−5))=  ((2(1−(√5)))/(−4))=(((√5)−1)/2)

$$\frac{\mathrm{2}}{\mathrm{1}+\sqrt{\mathrm{5}}}=\frac{\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)}{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)}=\frac{\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)}{\mathrm{1}−\mathrm{5}}= \\ $$$$\frac{\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)}{−\mathrm{4}}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com