Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 22874 by selestian last updated on 23/Oct/17

Answered by $@ty@m last updated on 23/Oct/17

Solutionof 9.  S_1 =((n(n+1))/2)  S_2 =((n(n+1)(n+2))/6)  S_3 ={((n(n+1))/2)}^2   ∴((S_3 (1+8S_1 ))/S_2 ^2 )=((n^2 (n+1)^2 .{1+8×((n(n+1))/2)})/(4×((n^2 ×(n+1)^2 ×(2n+1)^2 )/(36))))  =(({1+4n(n+1)}×9)/((2n+1)^2 ))  =((9(4n^2 +4n+1))/((2n+1)^2 ))  =9

$${Solutionof}\:\mathrm{9}. \\ $$$${S}_{\mathrm{1}} =\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${S}_{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}} \\ $$$${S}_{\mathrm{3}} =\left\{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$$\therefore\frac{{S}_{\mathrm{3}} \left(\mathrm{1}+\mathrm{8}{S}_{\mathrm{1}} \right)}{{S}_{\mathrm{2}} ^{\mathrm{2}} }=\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} .\left\{\mathrm{1}+\mathrm{8}×\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}}{\mathrm{4}×\frac{{n}^{\mathrm{2}} ×\left({n}+\mathrm{1}\right)^{\mathrm{2}} ×\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{36}}} \\ $$$$=\frac{\left\{\mathrm{1}+\mathrm{4}{n}\left({n}+\mathrm{1}\right)\right\}×\mathrm{9}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{9}\left(\mathrm{4}{n}^{\mathrm{2}} +\mathrm{4}{n}+\mathrm{1}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{9} \\ $$

Answered by $@ty@m last updated on 23/Oct/17

Solution of 10.  a_1 , a_2  , a_3  ... a_n   are in HP  ⇒(1/a_1 ), (1/a_2 ),...(1/a_n )  are in AP  ⇒a_2 =((2a_1 a_3 )/(a_1 +a_3 ))  ⇒a_1 a_2 +a_2 a_3 =2a_1 a_3   −−−(1)  Similarly  a_3 a_4 +a_4 a_5 =2a_3 a_5   −−−(2)  Now (1/a_3 )−(1/a_1 )=(1/a_5 )−(1/a_3 )  ⇒(2/a_3 )=((a_1 +a_5 )/(a_1 a_5 ))  ⇒2a_1 a_5 =a_1 a_3 +a_3 a_5      ×2  ⇒4a_1 a_5 =2a_1 a_3 +2a_3 a_5   ⇒a_1 a_2 +a_2 a_3 +a_3 a_4 +a_4 a_5 =4a_1 a_5   −−(3)                 {using (1) & (2)  Looking at the pattern of (1) and (3)  we can easily conclude that  a_1 a_2 +a_2 a_3 +a_3 a_4 +.....+a_(n−1) a_n =(n−1)a_1 a_n   ⇒k=n−1 Ans.

$${Solution}\:{of}\:\mathrm{10}. \\ $$$${a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} \:,\:{a}_{\mathrm{3}} \:...\:{a}_{{n}} \:\:{are}\:{in}\:{HP} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{a}_{\mathrm{1}} },\:\frac{\mathrm{1}}{{a}_{\mathrm{2}} },...\frac{\mathrm{1}}{{a}_{{n}} }\:\:{are}\:{in}\:{AP} \\ $$$$\Rightarrow{a}_{\mathrm{2}} =\frac{\mathrm{2}{a}_{\mathrm{1}} {a}_{\mathrm{3}} }{{a}_{\mathrm{1}} +{a}_{\mathrm{3}} } \\ $$$$\Rightarrow{a}_{\mathrm{1}} {a}_{\mathrm{2}} +{a}_{\mathrm{2}} {a}_{\mathrm{3}} =\mathrm{2}{a}_{\mathrm{1}} {a}_{\mathrm{3}} \:\:−−−\left(\mathrm{1}\right) \\ $$$${Similarly} \\ $$$${a}_{\mathrm{3}} {a}_{\mathrm{4}} +{a}_{\mathrm{4}} {a}_{\mathrm{5}} =\mathrm{2}{a}_{\mathrm{3}} {a}_{\mathrm{5}} \:\:−−−\left(\mathrm{2}\right) \\ $$$${Now}\:\frac{\mathrm{1}}{{a}_{\mathrm{3}} }−\frac{\mathrm{1}}{{a}_{\mathrm{1}} }=\frac{\mathrm{1}}{{a}_{\mathrm{5}} }−\frac{\mathrm{1}}{{a}_{\mathrm{3}} } \\ $$$$\Rightarrow\frac{\mathrm{2}}{{a}_{\mathrm{3}} }=\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{5}} }{{a}_{\mathrm{1}} {a}_{\mathrm{5}} } \\ $$$$\Rightarrow\mathrm{2}{a}_{\mathrm{1}} {a}_{\mathrm{5}} ={a}_{\mathrm{1}} {a}_{\mathrm{3}} +{a}_{\mathrm{3}} {a}_{\mathrm{5}} \:\:\:\:\:×\mathrm{2} \\ $$$$\Rightarrow\mathrm{4}{a}_{\mathrm{1}} {a}_{\mathrm{5}} =\mathrm{2}{a}_{\mathrm{1}} {a}_{\mathrm{3}} +\mathrm{2}{a}_{\mathrm{3}} {a}_{\mathrm{5}} \\ $$$$\Rightarrow{a}_{\mathrm{1}} {a}_{\mathrm{2}} +{a}_{\mathrm{2}} {a}_{\mathrm{3}} +{a}_{\mathrm{3}} {a}_{\mathrm{4}} +{a}_{\mathrm{4}} {a}_{\mathrm{5}} =\mathrm{4}{a}_{\mathrm{1}} {a}_{\mathrm{5}} \:\:−−\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{using}\:\left(\mathrm{1}\right)\:\&\:\left(\mathrm{2}\right)\right. \\ $$$${Looking}\:{at}\:{the}\:{pattern}\:{of}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{3}\right) \\ $$$${we}\:{can}\:{easily}\:{conclude}\:{that} \\ $$$${a}_{\mathrm{1}} {a}_{\mathrm{2}} +{a}_{\mathrm{2}} {a}_{\mathrm{3}} +{a}_{\mathrm{3}} {a}_{\mathrm{4}} +.....+{a}_{{n}−\mathrm{1}} {a}_{{n}} =\left({n}−\mathrm{1}\right){a}_{\mathrm{1}} {a}_{{n}} \\ $$$$\Rightarrow{k}={n}−\mathrm{1}\:{Ans}. \\ $$

Answered by math solver last updated on 23/Oct/17

Commented by math solver last updated on 23/Oct/17

alternative solution of q.10....  if you find difficulty in understanding  the pattern (ans. given by satyam bro) :)

$${alternative}\:{solution}\:{of}\:{q}.\mathrm{10}.... \\ $$$${if}\:{you}\:{find}\:{difficulty}\:{in}\:{understanding} \\ $$$$\left.{the}\:{pattern}\:\left({ans}.\:{given}\:{by}\:{satyam}\:{bro}\right)\::\right) \\ $$

Commented by $@ty@m last updated on 23/Oct/17

Nice..  It′s the systematic solution.

$${Nice}.. \\ $$$${It}'{s}\:{the}\:{systematic}\:{solution}. \\ $$

Commented by math solver last updated on 23/Oct/17

thanks ! ;)

$$\left.{thanks}\:!\:;\right) \\ $$

Commented by selestian last updated on 24/Oct/17

thAnks sir systematic is easy to  understand

$${thAnks}\:{sir}\:{systematic}\:{is}\:{easy}\:{to} \\ $$$${understand} \\ $$

Answered by Rasheed.Sindhi last updated on 25/Oct/17

Q#9  Easy solution!  ((S_3 (1+8S_1 ))/S_2 ^( 2) ) is constant for all n∈N  n=1⇒S_1 =S_2 =S_3 =1  ((S_3 (1+8S_1 ))/S_2 ^( 2) )=((1(1+8×1))/1^2 )=9  You need to evaluate only for  one value of n(It′s sufficient)  and simple case is n=1.

$$\mathcal{Q}#\mathrm{9} \\ $$$$\mathcal{E}{asy}\:{solution}! \\ $$$$\frac{\mathrm{S}_{\mathrm{3}} \left(\mathrm{1}+\mathrm{8S}_{\mathrm{1}} \right)}{\mathrm{S}_{\mathrm{2}} ^{\:\mathrm{2}} }\:\mathrm{is}\:\mathrm{constant}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathbb{N} \\ $$$$\mathrm{n}=\mathrm{1}\Rightarrow\mathrm{S}_{\mathrm{1}} =\mathrm{S}_{\mathrm{2}} =\mathrm{S}_{\mathrm{3}} =\mathrm{1} \\ $$$$\frac{\mathrm{S}_{\mathrm{3}} \left(\mathrm{1}+\mathrm{8S}_{\mathrm{1}} \right)}{\mathrm{S}_{\mathrm{2}} ^{\:\mathrm{2}} }=\frac{\mathrm{1}\left(\mathrm{1}+\mathrm{8}×\mathrm{1}\right)}{\mathrm{1}^{\mathrm{2}} }=\mathrm{9} \\ $$$$\mathrm{You}\:\mathrm{need}\:\mathrm{to}\:\mathrm{evaluate}\:\mathrm{only}\:\mathrm{for} \\ $$$$\mathrm{one}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}\left(\mathrm{It}'\mathrm{s}\:\mathrm{sufficient}\right) \\ $$$$\mathrm{and}\:\mathrm{simple}\:\mathrm{case}\:\mathrm{is}\:\mathrm{n}=\mathrm{1}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com