Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 229 by ssahoo last updated on 25/Jan/15

If z_1 , z_2  and z_3  are vertices of an equilateral  traingle inscribed in the circle ∣z∣=2 and if  z_1 =1+i(√3), then find the value of z_2  and z_3 .

$$\mathrm{If}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral} \\ $$$$\mathrm{traingle}\:\mathrm{inscribed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circle}\:\mid{z}\mid=\mathrm{2}\:\mathrm{and}\:\mathrm{if} \\ $$$${z}_{\mathrm{1}} =\mathrm{1}+{i}\sqrt{\mathrm{3}},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} . \\ $$

Answered by 123456 last updated on 16/Dec/14

∣z_1 ∣=2  z_1 =(2/2)(1+i(√3))  =2((1/2)+i((√3)/2))  =2(cos (π/3)+isin (π/3))  =2e^((π/3)i)   since z_1 ,z_2 ,z_3  are vertice of a equilatery triangle escribed into a circle at origin, then the other points are defased by ((2π)/3)  then  z_2 =z_1 e^(((2π)/3)i)   =2e^((1+2)(π/3)i)   =2e^(πi)   =2(cos π+isin π)  =−2  z_3 =z_2 e^(((2π)/3)i) =z_1 e^(−((2π)/3)i)   =2e^(πi) e^(((2π)/3)i) =2e^((π/3)i) e^(−((2π)/3)i)   =2e^((1+(2/3))πi) =2e^((1−2)(π/3)i)   =2e^(((5π)/3)i) =2e^(−(π/3)i)   =2(cos ((5π)/3)+isin ((5π)/3))=2(cos −(π/3)+isin −(π/3))  =2((1/2)−i((√3)/2))=2(cos (π/3)−isin (π/3))  =1−i(√3)  so  {z_1 ,z_2 ,z_3 }={1+i(√3),−2,1−i(√3)}  solution of (a≠0)  a[z−(1+i(√3))][z−(−2)][z−(1−i(√3))]=0  a[(z−1)−i(√3)][(z−1)+i(√3)](z+2)=0  a[(z−1)^2 +3](z+2)=0  a(z^2 −2z+1+3)(z+2)=0  a(z^2 −2z+4)(z+2)=0  a(z^3 −2z^2 +4z+2z^2 −4z+8)=0  a(z^3 +8)=0

$$\mid{z}_{\mathrm{1}} \mid=\mathrm{2} \\ $$$${z}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{2}}\left(\mathrm{1}+{i}\sqrt{\mathrm{3}}\right) \\ $$$$=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right) \\ $$$$=\mathrm{2}{e}^{\frac{\pi}{\mathrm{3}}{i}} \\ $$$$\mathrm{since}\:{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} ,{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{vertice}\:\mathrm{of}\:\mathrm{a}\:\mathrm{equilatery}\:\mathrm{triangle}\:\mathrm{escribed}\:\mathrm{into}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{origin},\:\mathrm{then}\:\mathrm{the}\:\mathrm{other}\:\mathrm{points}\:\mathrm{are}\:\mathrm{defased}\:\mathrm{by}\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\mathrm{then} \\ $$$${z}_{\mathrm{2}} ={z}_{\mathrm{1}} {e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}{i}} \\ $$$$=\mathrm{2}{e}^{\left(\mathrm{1}+\mathrm{2}\right)\frac{\pi}{\mathrm{3}}{i}} \\ $$$$=\mathrm{2}{e}^{\pi{i}} \\ $$$$=\mathrm{2}\left(\mathrm{cos}\:\pi+{i}\mathrm{sin}\:\pi\right) \\ $$$$=−\mathrm{2} \\ $$$${z}_{\mathrm{3}} ={z}_{\mathrm{2}} {e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}{i}} ={z}_{\mathrm{1}} {e}^{−\frac{\mathrm{2}\pi}{\mathrm{3}}{i}} \\ $$$$=\mathrm{2}{e}^{\pi{i}} {e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}{i}} =\mathrm{2}{e}^{\frac{\pi}{\mathrm{3}}{i}} {e}^{−\frac{\mathrm{2}\pi}{\mathrm{3}}{i}} \\ $$$$=\mathrm{2}{e}^{\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\right)\pi{i}} =\mathrm{2}{e}^{\left(\mathrm{1}−\mathrm{2}\right)\frac{\pi}{\mathrm{3}}{i}} \\ $$$$=\mathrm{2}{e}^{\frac{\mathrm{5}\pi}{\mathrm{3}}{i}} =\mathrm{2}{e}^{−\frac{\pi}{\mathrm{3}}{i}} \\ $$$$=\mathrm{2}\left(\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{3}}\right)=\mathrm{2}\left(\mathrm{cos}\:−\frac{\pi}{\mathrm{3}}+{i}\mathrm{sin}\:−\frac{\pi}{\mathrm{3}}\right) \\ $$$$=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{2}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right) \\ $$$$=\mathrm{1}−{i}\sqrt{\mathrm{3}} \\ $$$$\mathrm{so} \\ $$$$\left\{{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} ,{z}_{\mathrm{3}} \right\}=\left\{\mathrm{1}+{i}\sqrt{\mathrm{3}},−\mathrm{2},\mathrm{1}−{i}\sqrt{\mathrm{3}}\right\} \\ $$$$\mathrm{solution}\:\mathrm{of}\:\left({a}\neq\mathrm{0}\right) \\ $$$${a}\left[{z}−\left(\mathrm{1}+{i}\sqrt{\mathrm{3}}\right)\right]\left[{z}−\left(−\mathrm{2}\right)\right]\left[{z}−\left(\mathrm{1}−{i}\sqrt{\mathrm{3}}\right)\right]=\mathrm{0} \\ $$$${a}\left[\left({z}−\mathrm{1}\right)−{i}\sqrt{\mathrm{3}}\right]\left[\left({z}−\mathrm{1}\right)+{i}\sqrt{\mathrm{3}}\right]\left({z}+\mathrm{2}\right)=\mathrm{0} \\ $$$${a}\left[\left({z}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}\right]\left({z}+\mathrm{2}\right)=\mathrm{0} \\ $$$${a}\left({z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{1}+\mathrm{3}\right)\left({z}+\mathrm{2}\right)=\mathrm{0} \\ $$$${a}\left({z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{4}\right)\left({z}+\mathrm{2}\right)=\mathrm{0} \\ $$$${a}\left({z}^{\mathrm{3}} −\mathrm{2}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{2}{z}^{\mathrm{2}} −\mathrm{4}{z}+\mathrm{8}\right)=\mathrm{0} \\ $$$${a}\left({z}^{\mathrm{3}} +\mathrm{8}\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com