Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23049 by Tinkutara last updated on 25/Oct/17

A particle of mass m strikes on ground  with angle of incidence 45°. If coefficient  of restitution, e = (1/(√2)) , find the velocity  after impact and angle of reflection.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{strikes}\:\mathrm{on}\:\mathrm{ground} \\ $$$$\mathrm{with}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{incidence}\:\mathrm{45}°.\:\mathrm{If}\:\mathrm{coefficient} \\ $$$$\mathrm{of}\:\mathrm{restitution},\:{e}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{after}\:\mathrm{impact}\:\mathrm{and}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{reflection}. \\ $$

Answered by ajfour last updated on 25/Oct/17

parallel to ground (if friction be  zero then) we conserve linear  momentum.  let initial speed be v_0  , and final  speed be v.  mvsin θ=mv_0 sin 45°   ⇒    vsin θ=(v_0 /(√2))      ....(i)     v_(separation)  =e(v_(approach) )  ⇒    vcos θ=(1/(√2))×v_0 cos 45°       ⇒  vcos θ=(v_0 /2)       ...(ii)  (i)÷(ii) gives     tan θ =(√2)    ⇒   𝛉=tan^(−1) (√2)    v^2 sin^2 θ+v^2 cos^2 θ =(v_0 ^2 /2)+(v_0 ^2 /4)  ⇒    v = ((v_0 (√3))/2) .

$${parallel}\:{to}\:{ground}\:\left({if}\:{friction}\:{be}\right. \\ $$$$\left.{zero}\:{then}\right)\:{we}\:{conserve}\:{linear} \\ $$$${momentum}. \\ $$$${let}\:{initial}\:{speed}\:{be}\:\boldsymbol{{v}}_{\mathrm{0}} \:,\:{and}\:{final} \\ $$$${speed}\:{be}\:\boldsymbol{{v}}. \\ $$$${mv}\mathrm{sin}\:\theta={mv}_{\mathrm{0}} \mathrm{sin}\:\mathrm{45}°\: \\ $$$$\Rightarrow\:\:\:\:{v}\mathrm{sin}\:\theta=\frac{{v}_{\mathrm{0}} }{\sqrt{\mathrm{2}}}\:\:\:\:\:\:....\left({i}\right) \\ $$$$\:\:\:{v}_{{separation}} \:={e}\left({v}_{{approach}} \right) \\ $$$$\Rightarrow\:\:\:\:{v}\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}×{v}_{\mathrm{0}} \mathrm{cos}\:\mathrm{45}° \\ $$$$\:\:\:\:\:\Rightarrow\:\:{v}\mathrm{cos}\:\theta=\frac{{v}_{\mathrm{0}} }{\mathrm{2}}\:\:\:\:\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)\boldsymbol{\div}\left({ii}\right)\:{gives} \\ $$$$\:\:\:\mathrm{tan}\:\theta\:=\sqrt{\mathrm{2}}\:\:\:\:\Rightarrow\:\:\:\boldsymbol{\theta}=\mathrm{tan}^{−\mathrm{1}} \sqrt{\mathrm{2}} \\ $$$$\:\:{v}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+{v}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\:=\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}}+\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow\:\:\:\:\boldsymbol{{v}}\:=\:\frac{\boldsymbol{{v}}_{\mathrm{0}} \sqrt{\mathrm{3}}}{\mathrm{2}}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 25/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com