Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23224 by Tinkutara last updated on 27/Oct/17

Consider the system shown in the  figure. Initially the system was in rest.  (i) Find the acceleration of block if man  climbs the rod with acceleration a (w.r.t.  rod)  (ii) If the man climb to the top of the  rod then find the distance moved by the  block.

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{figure}.\:\mathrm{Initially}\:\mathrm{the}\:\mathrm{system}\:\mathrm{was}\:\mathrm{in}\:\mathrm{rest}. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{block}\:\mathrm{if}\:\mathrm{man} \\ $$$$\mathrm{climbs}\:\mathrm{the}\:\mathrm{rod}\:\mathrm{with}\:\mathrm{acceleration}\:{a}\:\left(\mathrm{w}.\mathrm{r}.\mathrm{t}.\right. \\ $$$$\left.\mathrm{rod}\right) \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{man}\:\mathrm{climb}\:\mathrm{to}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{rod}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{moved}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{block}. \\ $$

Commented by mrW1 last updated on 27/Oct/17

(1)  let a_R =acceleration of rod (↑) and block (↓)  a_M =acceleration of man (↑)  a_M =a+a_R   F=force between rod and man  F−mg=ma_M =m(a+a_R )  ⇒F=m(g+a+a_R )  (M+m−M)g−F=(M+m+M)a_R   (M+m−M)g−m(g+a+a_R )=(M+m+M)a_R   −ma=2(M+m)a_R   ⇒a_R =−((ma)/(2(M+m)))  (2)  L=(1/2)at^2   ΔH=(1/2)a_R t^2   ⇒ΔH=(a_R /a)×L  ⇒ΔH=−(m/(2(M+m)))×L  (the block moves up a distance ((mL)/(2(M+m))))

$$\left(\mathrm{1}\right) \\ $$$$\mathrm{let}\:\mathrm{a}_{\mathrm{R}} =\mathrm{acceleration}\:\mathrm{of}\:\mathrm{rod}\:\left(\uparrow\right)\:\mathrm{and}\:\mathrm{block}\:\left(\downarrow\right) \\ $$$$\mathrm{a}_{\mathrm{M}} =\mathrm{acceleration}\:\mathrm{of}\:\mathrm{man}\:\left(\uparrow\right) \\ $$$$\mathrm{a}_{\mathrm{M}} =\mathrm{a}+\mathrm{a}_{\mathrm{R}} \\ $$$$\mathrm{F}=\mathrm{force}\:\mathrm{between}\:\mathrm{rod}\:\mathrm{and}\:\mathrm{man} \\ $$$$\mathrm{F}−\mathrm{mg}=\mathrm{ma}_{\mathrm{M}} =\mathrm{m}\left(\mathrm{a}+\mathrm{a}_{\mathrm{R}} \right) \\ $$$$\Rightarrow\mathrm{F}=\mathrm{m}\left(\mathrm{g}+\mathrm{a}+\mathrm{a}_{\mathrm{R}} \right) \\ $$$$\left(\mathrm{M}+\mathrm{m}−\mathrm{M}\right)\mathrm{g}−\mathrm{F}=\left(\mathrm{M}+\mathrm{m}+\mathrm{M}\right)\mathrm{a}_{\mathrm{R}} \\ $$$$\left(\mathrm{M}+\mathrm{m}−\mathrm{M}\right)\mathrm{g}−\mathrm{m}\left(\mathrm{g}+\mathrm{a}+\mathrm{a}_{\mathrm{R}} \right)=\left(\mathrm{M}+\mathrm{m}+\mathrm{M}\right)\mathrm{a}_{\mathrm{R}} \\ $$$$−\mathrm{ma}=\mathrm{2}\left(\mathrm{M}+\mathrm{m}\right)\mathrm{a}_{\mathrm{R}} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{R}} =−\frac{\mathrm{ma}}{\mathrm{2}\left(\mathrm{M}+\mathrm{m}\right)} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{L}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{at}^{\mathrm{2}} \\ $$$$\Delta\mathrm{H}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{a}_{\mathrm{R}} \mathrm{t}^{\mathrm{2}} \\ $$$$\Rightarrow\Delta\mathrm{H}=\frac{\mathrm{a}_{\mathrm{R}} }{\mathrm{a}}×\mathrm{L} \\ $$$$\Rightarrow\Delta\mathrm{H}=−\frac{\mathrm{m}}{\mathrm{2}\left(\mathrm{M}+\mathrm{m}\right)}×\mathrm{L} \\ $$$$\left(\mathrm{the}\:\mathrm{block}\:\mathrm{moves}\:\mathrm{up}\:\mathrm{a}\:\mathrm{distance}\:\frac{\mathrm{mL}}{\mathrm{2}\left(\mathrm{M}+\mathrm{m}\right)}\right) \\ $$

Commented by Tinkutara last updated on 27/Oct/17

Commented by mrW1 last updated on 27/Oct/17

that depents on which direction is  defined as positive. in your book the  +ve direction for the block is upwards,  so there is no “−”. i defined +ve direction  downwards, so i have “−”. the result  is the same, i.e. the block moves a  distance ((mL)/(2(M+m))) upwards.

$$\mathrm{that}\:\mathrm{depents}\:\mathrm{on}\:\mathrm{which}\:\mathrm{direction}\:\mathrm{is} \\ $$$$\mathrm{defined}\:\mathrm{as}\:\mathrm{positive}.\:\mathrm{in}\:\mathrm{your}\:\mathrm{book}\:\mathrm{the} \\ $$$$+\mathrm{ve}\:\mathrm{direction}\:\mathrm{for}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is}\:\mathrm{upwards}, \\ $$$$\mathrm{so}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:``−''.\:\mathrm{i}\:\mathrm{defined}\:+\mathrm{ve}\:\mathrm{direction} \\ $$$$\mathrm{downwards},\:\mathrm{so}\:\mathrm{i}\:\mathrm{have}\:``−''.\:\mathrm{the}\:\mathrm{result} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{same},\:\mathrm{i}.\mathrm{e}.\:\mathrm{the}\:\mathrm{block}\:\mathrm{moves}\:\mathrm{a} \\ $$$$\mathrm{distance}\:\frac{\mathrm{mL}}{\mathrm{2}\left(\mathrm{M}+\mathrm{m}\right)}\:\mathrm{upwards}. \\ $$

Commented by Tinkutara last updated on 28/Oct/17

OK Thanks.

$$\mathrm{OK}\:\mathrm{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com