Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23288 by Tinkutara last updated on 28/Oct/17

A uniform chain of mass M and length  L is hanging from the table. The chain  is in limiting equilibrium when l length  of chain over hangs. It is slightly  disturbed from this position. Find the  speed of the chain just after it completely  comes off the table.

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{chain}\:\mathrm{of}\:\mathrm{mass}\:{M}\:\mathrm{and}\:\mathrm{length} \\ $$$${L}\:\mathrm{is}\:\mathrm{hanging}\:\mathrm{from}\:\mathrm{the}\:\mathrm{table}.\:\mathrm{The}\:\mathrm{chain} \\ $$$$\mathrm{is}\:\mathrm{in}\:\mathrm{limiting}\:\mathrm{equilibrium}\:\mathrm{when}\:{l}\:\mathrm{length} \\ $$$$\mathrm{of}\:\mathrm{chain}\:\mathrm{over}\:\mathrm{hangs}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{slightly} \\ $$$$\mathrm{disturbed}\:\mathrm{from}\:\mathrm{this}\:\mathrm{position}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chain}\:\mathrm{just}\:\mathrm{after}\:\mathrm{it}\:\mathrm{completely} \\ $$$$\mathrm{comes}\:\mathrm{off}\:\mathrm{the}\:\mathrm{table}. \\ $$

Commented by Tinkutara last updated on 28/Oct/17

Commented by Physics lover last updated on 28/Oct/17

Is it         (√(g(L−l)))  ?

$${Is}\:{it}\: \\ $$$$\:\:\:\:\:\:\sqrt{{g}\left({L}−{l}\right)}\:\:? \\ $$

Commented by Physics lover last updated on 28/Oct/17

The answer given in the book is         (√((gL)/((1+μ))))  ut the answer which i got is same.     μ = (l/(L−l ))     ⇒ l = ((μL)/((1+μ)))  if  you substitute  l   in  my answer      (√(g(L−l) ))  = (√(g{L−((μL)/((1+μ)))}))  = (√(g{((L+μL−μL)/((1+μ)))}))  = (√((gL)/((1+μ))))

$${The}\:{answer}\:{given}\:{in}\:{the}\:{book}\:{is} \\ $$$$\:\:\:\:\:\:\:\sqrt{\frac{{gL}}{\left(\mathrm{1}+\mu\right)}} \\ $$$${ut}\:{the}\:{answer}\:{which}\:{i}\:{got}\:{is}\:{same}. \\ $$$$\: \\ $$$$\mu\:=\:\frac{{l}}{{L}−{l}\:}\:\:\:\:\:\Rightarrow\:{l}\:=\:\frac{\mu{L}}{\left(\mathrm{1}+\mu\right)} \\ $$$${if}\:\:{you}\:{substitute}\:\:{l}\:\:\:{in}\:\:{my}\:{answer} \\ $$$$\:\:\:\:\sqrt{{g}\left({L}−{l}\right)\:} \\ $$$$=\:\sqrt{{g}\left\{{L}−\frac{\mu{L}}{\left(\mathrm{1}+\mu\right)}\right\}} \\ $$$$=\:\sqrt{{g}\left\{\frac{{L}+\mu{L}−\mu{L}}{\left(\mathrm{1}+\mu\right)}\right\}} \\ $$$$=\:\sqrt{\frac{{gL}}{\left(\mathrm{1}+\mu\right)}} \\ $$$$ \\ $$

Answered by Physics lover last updated on 28/Oct/17

        λ = linear mass density = ((M )/L)     ⇒ μg(L−l)λ = λgl     ⇒ μ  = ((l )/((L−l)))           let an element dx at a distance     x from edge of table.     dW_(friction )   = (−μgλdx)∙x  as friction ′s direction is opposite  to that of dist covered.   ⇒ ∫_0 ^(  W) dW =   − ∫_0 ^((L−l))  μg((M/L))x ∙dx    ⇒ W = −((Mgl(L−l))/(2L))  Using  Energy conservation  ⇒ ∣ΔK.E.∣ = ∣ΔP.E.∣ + W_(friction)   ⇒ (1/2) mv^(2 ) = ∣ g(λl)((l/2))−g(λL)((L/2))∣ − ((Mgl(L−l))/(2L))   subtitute λ = (M/L)  on solving     v = (√(g(L−l)))

$$ \\ $$$$ \\ $$$$\:\:\:\:\lambda\:=\:{linear}\:{mass}\:{density}\:=\:\frac{{M}\:}{{L}} \\ $$$$\:\:\:\Rightarrow\:\mu{g}\left({L}−{l}\right)\lambda\:=\:\lambda{gl} \\ $$$$\:\:\:\Rightarrow\:\mu\:\:=\:\frac{{l}\:}{\left({L}−{l}\right)} \\ $$$$\:\:\: \\ $$$$\:\:\:\:{let}\:{an}\:{element}\:{dx}\:{at}\:{a}\:{distance} \\ $$$$\:\:\:{x}\:{from}\:{edge}\:{of}\:{table}. \\ $$$$\:\:\:{dW}_{{friction}\:} \:\:=\:\left(−\mu{g}\lambda{dx}\right)\centerdot{x} \\ $$$${as}\:{friction}\:'{s}\:{direction}\:{is}\:{opposite} \\ $$$${to}\:{that}\:{of}\:{dist}\:{covered}. \\ $$$$\:\Rightarrow\:\int_{\mathrm{0}} ^{\:\:{W}} {dW}\:=\:\:\:−\:\underset{\mathrm{0}} {\overset{\left({L}−{l}\right)} {\int}}\:\mu{g}\left(\frac{{M}}{{L}}\right){x}\:\centerdot{dx} \\ $$$$\:\:\Rightarrow\:{W}\:=\:−\frac{{Mgl}\left({L}−{l}\right)}{\mathrm{2}{L}} \\ $$$${Using}\:\:{Energy}\:{conservation} \\ $$$$\Rightarrow\:\mid\Delta{K}.{E}.\mid\:=\:\mid\Delta{P}.{E}.\mid\:+\:{W}_{{friction}} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\:{mv}^{\mathrm{2}\:} =\:\mid\:{g}\left(\lambda{l}\right)\left(\frac{{l}}{\mathrm{2}}\right)−{g}\left(\lambda{L}\right)\left(\frac{{L}}{\mathrm{2}}\right)\mid\:−\:\frac{{Mgl}\left({L}−{l}\right)}{\mathrm{2}{L}} \\ $$$$\:{subtitute}\:\lambda\:=\:\frac{{M}}{{L}} \\ $$$${on}\:{solving}\: \\ $$$$\:\:{v}\:=\:\sqrt{{g}\left({L}−{l}\right)} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Physics lover last updated on 28/Oct/17

Commented by Tinkutara last updated on 28/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by Physics lover last updated on 28/Oct/17

you are welcome.  BTW,did you try question no. 14   H section , laws of motion.Its  a good one too.

$${you}\:{are}\:{welcome}. \\ $$$${BTW},{did}\:{you}\:{try}\:{question}\:{no}.\:\mathrm{14} \\ $$$$\:{H}\:{section}\:,\:{laws}\:{of}\:{motion}.{Its} \\ $$$${a}\:{good}\:{one}\:{too}. \\ $$

Commented by Physics lover last updated on 28/Oct/17

hmmm.

$${hmmm}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com