Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 23346 by ajfour last updated on 29/Oct/17

Commented by Physics lover last updated on 29/Oct/17

Nice trick sir.

$${Nice}\:{trick}\:{sir}. \\ $$

Commented by ajfour last updated on 29/Oct/17

The centre of mass velocity of  the conveyor belt  vehicle of   mass M rolling along a level   road is v_0 .Find its kinetic energy.

$${The}\:{centre}\:{of}\:{mass}\:{velocity}\:{of} \\ $$$${the}\:{conveyor}\:{belt}\:\:{vehicle}\:{of}\: \\ $$$${mass}\:{M}\:{rolling}\:{along}\:{a}\:{level}\: \\ $$$${road}\:{is}\:\boldsymbol{{v}}_{\mathrm{0}} .\boldsymbol{{F}}{ind}\:{its}\:{kinetic}\:{energy}. \\ $$

Commented by Physics lover last updated on 29/Oct/17

Commented by Physics lover last updated on 29/Oct/17

Sorry,Mr Ajfour , I flagged this   question by mistake.  Did not  intend to do so at all.

$${Sorry},{Mr}\:{Ajfour}\:,\:{I}\:{flagged}\:{this}\: \\ $$$${question}\:{by}\:{mistake}. \\ $$$${Did}\:{not}\:\:{intend}\:{to}\:{do}\:{so}\:{at}\:{all}. \\ $$

Commented by mrW1 last updated on 29/Oct/17

M=M_R +2M_L   M_R =mass of circular parts(=DA^(⌢) +BC^(⌢) )  M_L =mass of parallel part (=AB=DC)    KE_R =(1/2)M_R v_0 ^2 +(1/2)Iω^2   =(1/2)M_R v_0 ^2 +(1/2)M_R R^2 ((v_0 /R))^2   =M_R v_0 ^2     KE_L =(1/2)M_L (2v_0 )^2 +(1/2)M_L 0^2   =2M_L v_0 ^2     total KE=KE_R +KE_L   =M_R v_0 ^2 +2M_L v_0 ^2   =(M_R +2M_L )v_0 ^2   =Mv_0 ^2

$$\mathrm{M}=\mathrm{M}_{\mathrm{R}} +\mathrm{2M}_{\mathrm{L}} \\ $$$$\mathrm{M}_{\mathrm{R}} =\mathrm{mass}\:\mathrm{of}\:\mathrm{circular}\:\mathrm{parts}\left(=\overset{\frown} {\mathrm{DA}}+\overset{\frown} {\mathrm{BC}}\right) \\ $$$$\mathrm{M}_{\mathrm{L}} =\mathrm{mass}\:\mathrm{of}\:\mathrm{parallel}\:\mathrm{part}\:\left(=\mathrm{AB}=\mathrm{DC}\right) \\ $$$$ \\ $$$$\mathrm{KE}_{\mathrm{R}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{M}_{\mathrm{R}} \mathrm{v}_{\mathrm{0}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}\omega^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{M}_{\mathrm{R}} \mathrm{v}_{\mathrm{0}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{M}_{\mathrm{R}} \mathrm{R}^{\mathrm{2}} \left(\frac{\mathrm{v}_{\mathrm{0}} }{\mathrm{R}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{M}_{\mathrm{R}} \mathrm{v}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{KE}_{\mathrm{L}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{M}_{\mathrm{L}} \left(\mathrm{2v}_{\mathrm{0}} \right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{M}_{\mathrm{L}} \mathrm{0}^{\mathrm{2}} \\ $$$$=\mathrm{2M}_{\mathrm{L}} \mathrm{v}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{total}\:\mathrm{KE}=\mathrm{KE}_{\mathrm{R}} +\mathrm{KE}_{\mathrm{L}} \\ $$$$=\mathrm{M}_{\mathrm{R}} \mathrm{v}_{\mathrm{0}} ^{\mathrm{2}} +\mathrm{2M}_{\mathrm{L}} \mathrm{v}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\left(\mathrm{M}_{\mathrm{R}} +\mathrm{2M}_{\mathrm{L}} \right)\mathrm{v}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\mathrm{Mv}_{\mathrm{0}} ^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 29/Oct/17

thanks again, Sir.

$${thanks}\:{again},\:{Sir}. \\ $$

Commented by ajfour last updated on 29/Oct/17

If we assume small radius, or  height, then  K=(1/2)((M/2))(2v_0 )^2 +0+0+0     K =Mv_0 ^2  .

$${If}\:{we}\:{assume}\:{small}\:{radius},\:{or} \\ $$$${height},\:{then} \\ $$$${K}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{M}}{\mathrm{2}}\right)\left(\mathrm{2}{v}_{\mathrm{0}} \right)^{\mathrm{2}} +\mathrm{0}+\mathrm{0}+\mathrm{0} \\ $$$$\:\:\:\boldsymbol{{K}}\:=\boldsymbol{{Mv}}_{\mathrm{0}} ^{\mathrm{2}} \:. \\ $$

Answered by Physics lover last updated on 29/Oct/17

the particles on AB ard purely   translating with velocity 2v_0   And the semicurcular rings AD  and BC are pure rolling with velocity  v_(0 ) and ω = (v_0 /R)  let λ be linear mass density  ⇒ λ = (M/(2l+2πR))  Tot K.E. = K.E._(rotational ) + K.E._(translational)      ={ (1/(2 ))(2πRλ)R^2 ((v_0 ^2 /R^(2 ) )) } +{ (1/2)(λl)(2v_0 )^2 + (1/2)(2πRλ)v_0 ^2  }       ={ πRλv_0 ^(2 ) } +{ 2lλv_0 ^( 2)  + πRλv_(0 ) ^( 2) }   = 2πRv_0 ^(2 ) +2lλv_0 ^2   = 2λv_0 ^2  (πR + l )  = 2((M/(2l + 2πR)))v_0 ^(2 ) (πR + l )  K.E.  =  Mv_0 ^2

$${the}\:{particles}\:{on}\:{AB}\:{ard}\:{purely}\: \\ $$$${translating}\:{with}\:{velocity}\:\mathrm{2}{v}_{\mathrm{0}} \\ $$$${And}\:{the}\:{semicurcular}\:{rings}\:{AD} \\ $$$${and}\:{BC}\:{are}\:{pure}\:{rolling}\:{with}\:{velocity} \\ $$$${v}_{\mathrm{0}\:} {and}\:\omega\:=\:\frac{{v}_{\mathrm{0}} }{{R}} \\ $$$${let}\:\lambda\:{be}\:{linear}\:{mass}\:{density} \\ $$$$\Rightarrow\:\lambda\:=\:\frac{{M}}{\mathrm{2}{l}+\mathrm{2}\pi{R}} \\ $$$${Tot}\:{K}.{E}.\:=\:{K}.{E}._{{rotational}\:} +\:{K}.{E}._{{translational}} \\ $$$$\:\:\:=\left\{\:\frac{\mathrm{1}}{\mathrm{2}\:}\left(\mathrm{2}\pi{R}\lambda\right){R}^{\mathrm{2}} \left(\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{{R}^{\mathrm{2}\:} }\right)\:\right\}\:+\left\{\:\frac{\mathrm{1}}{\mathrm{2}}\left(\lambda{l}\right)\left(\mathrm{2}{v}_{\mathrm{0}} \right)^{\mathrm{2}} +\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\pi{R}\lambda\right){v}_{\mathrm{0}} ^{\mathrm{2}} \:\right\} \\ $$$$\:\: \\ $$$$\:=\left\{\:\pi{R}\lambda{v}_{\mathrm{0}} ^{\mathrm{2}\:} \right\}\:+\left\{\:\mathrm{2}{l}\lambda{v}_{\mathrm{0}} ^{\:\mathrm{2}} \:+\:\pi{R}\lambda{v}_{\mathrm{0}\:} ^{\:\mathrm{2}} \right\} \\ $$$$\:=\:\mathrm{2}\pi{Rv}_{\mathrm{0}} ^{\mathrm{2}\:} +\mathrm{2}{l}\lambda{v}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\:\mathrm{2}\lambda{v}_{\mathrm{0}} ^{\mathrm{2}} \:\left(\pi{R}\:+\:{l}\:\right) \\ $$$$=\:\mathrm{2}\left(\frac{{M}}{\mathrm{2}{l}\:+\:\mathrm{2}\pi{R}}\right){v}_{\mathrm{0}} ^{\mathrm{2}\:} \left(\pi{R}\:+\:{l}\:\right) \\ $$$${K}.{E}.\:\:=\:\:{Mv}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by ajfour last updated on 29/Oct/17

Ans. is K.E. = Mv_0 ^2  .

$${Ans}.\:{is}\:{K}.{E}.\:=\:{Mv}_{\mathrm{0}} ^{\mathrm{2}} \:. \\ $$

Commented by ajfour last updated on 29/Oct/17

Thank you Physics lover.

$${Thank}\:{you}\:{Physics}\:{lover}. \\ $$

Commented by Physics lover last updated on 29/Oct/17

You are welcome sir. But i guess  i did it in the most lengthy way.lol

$${You}\:{are}\:{welcome}\:{sir}.\:{But}\:{i}\:{guess} \\ $$$${i}\:{did}\:{it}\:{in}\:{the}\:{most}\:{lengthy}\:{way}.{lol} \\ $$

Commented by ajfour last updated on 29/Oct/17

Your proof is quite general one  (answer to a subjective question).

$${Your}\:{proof}\:{is}\:{quite}\:{general}\:{one} \\ $$$$\left({answer}\:{to}\:{a}\:{subjective}\:{question}\right). \\ $$

Commented by Physics lover last updated on 29/Oct/17

Oh thank you sir.  :)

$$\left.{Oh}\:{thank}\:{you}\:{sir}.\:\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com