Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23489 by Tinkutara last updated on 31/Oct/17

A rectangular wire frame ABCD is in  vertical plane is moving with a constant  acceleration a into the plane. Direction  of gravity is shown in figure. A collar  can move on wire AC of length l.  Coefficient of friction between wire  and collar is μ. Find  (i) The minimum acceleration a so that  collar does not slip on wire.  (ii) The time taken by collar to reach C  if acceleration is half the value  calculated in part (i)

$$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{wire}\:\mathrm{frame}\:{ABCD}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{vertical}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\mathrm{acceleration}\:{a}\:\mathrm{into}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Direction} \\ $$$$\mathrm{of}\:\mathrm{gravity}\:\mathrm{is}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure}.\:\mathrm{A}\:\mathrm{collar} \\ $$$$\mathrm{can}\:\mathrm{move}\:\mathrm{on}\:\mathrm{wire}\:{AC}\:\mathrm{of}\:\mathrm{length}\:{l}. \\ $$$$\mathrm{Coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{wire} \\ $$$$\mathrm{and}\:\mathrm{collar}\:\mathrm{is}\:\mu.\:\mathrm{Find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{acceleration}\:{a}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{collar}\:\mathrm{does}\:\mathrm{not}\:\mathrm{slip}\:\mathrm{on}\:\mathrm{wire}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{time}\:\mathrm{taken}\:\mathrm{by}\:\mathrm{collar}\:\mathrm{to}\:\mathrm{reach}\:{C} \\ $$$$\mathrm{if}\:\mathrm{acceleration}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{calculated}\:\mathrm{in}\:\mathrm{part}\:\left(\mathrm{i}\right) \\ $$

Commented by Tinkutara last updated on 31/Oct/17

Commented by mrW1 last updated on 31/Oct/17

(i)  μm((√(a^2 +g^2 cos^2  θ)))≥mg sin θ  a^2 ≥(((sin^2  θ)/μ^2 )−cos^2  θ)g^2   a≥(g/μ)(√(sin^2  θ−μ^2 cos^2  θ))  (ii)  with a=(g/(2μ))(√(sin^2  θ−μ^2 cos^2  θ))  ma_s =mg sin θ−μmg((√(((sin^2  θ−μ^2 cos^2  θ)/(4μ^2 ))+cos^2  θ)))  a_s =(g/2)(2sin θ−(√(sin^2  θ+3μ^2 cos^2  θ)))  t=(√((2L)/a_s ))=2(√(L/((2sin θ−(√(sin^2  θ+3μ^2 cos^2  θ)))g)))

$$\left(\mathrm{i}\right) \\ $$$$\mu\mathrm{m}\left(\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{g}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\right)\geqslant\mathrm{mg}\:\mathrm{sin}\:\theta \\ $$$$\mathrm{a}^{\mathrm{2}} \geqslant\left(\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mu^{\mathrm{2}} }−\mathrm{cos}^{\mathrm{2}} \:\theta\right)\mathrm{g}^{\mathrm{2}} \\ $$$$\mathrm{a}\geqslant\frac{\mathrm{g}}{\mu}\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta−\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\left(\mathrm{ii}\right) \\ $$$$\mathrm{with}\:\mathrm{a}=\frac{\mathrm{g}}{\mathrm{2}\mu}\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta−\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\mathrm{ma}_{\mathrm{s}} =\mathrm{mg}\:\mathrm{sin}\:\theta−\mu\mathrm{mg}\left(\sqrt{\frac{\mathrm{sin}^{\mathrm{2}} \:\theta−\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{4}\mu^{\mathrm{2}} }+\mathrm{cos}^{\mathrm{2}} \:\theta}\right) \\ $$$$\mathrm{a}_{\mathrm{s}} =\frac{\mathrm{g}}{\mathrm{2}}\left(\mathrm{2sin}\:\theta−\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{3}\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\right) \\ $$$$\mathrm{t}=\sqrt{\frac{\mathrm{2L}}{\mathrm{a}_{\mathrm{s}} }}=\mathrm{2}\sqrt{\frac{\mathrm{L}}{\left(\mathrm{2sin}\:\theta−\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{3}\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\right)\mathrm{g}}} \\ $$

Answered by ajfour last updated on 31/Oct/17

Commented by ajfour last updated on 31/Oct/17

N_z =ma  N_x =mgcos θ   N=m(√(a^2 +g^2 cos^2 θ))  (i)      f−mgsin θ=0      ⇒ μN ≥ mgsin θ  or   a^2 +g^2 cos^2 θ=((g^2 sin^2 θ)/μ^2 )       a ≥ (g/μ)(√(sin^2 θ−μ^2 cos^2 θ))   (ii)  l=(1/2)A_y t^2        mgsin θ−μN=mA_y      N=m(√(a^2 /4+g^2 cos^2 θ))   A_y =gsin θ−μ(√((g^2 /(4μ^2 ))(sin^2 θ−μ^2 cos^2 θ)+g^2 cos^2 θ))  t=(√((2l)/A_y ))   =(√((2l)/(gsin θ−(g/2)(√(sin^2 θ+3μ^2 cos^2 θ))))) .

$${N}_{{z}} ={ma} \\ $$$${N}_{{x}} ={mg}\mathrm{cos}\:\theta \\ $$$$\:{N}={m}\sqrt{{a}^{\mathrm{2}} +{g}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta} \\ $$$$\left({i}\right)\:\:\:\:\:\:{f}−{mg}\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\:\:\:\:\Rightarrow\:\mu{N}\:\geqslant\:{mg}\mathrm{sin}\:\theta \\ $$$${or}\:\:\:{a}^{\mathrm{2}} +{g}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta=\frac{{g}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mu^{\mathrm{2}} } \\ $$$$\:\:\:\:\:{a}\:\geqslant\:\frac{{g}}{\mu}\sqrt{\mathrm{sin}\:^{\mathrm{2}} \theta−\mu^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}\: \\ $$$$\left({ii}\right)\:\:{l}=\frac{\mathrm{1}}{\mathrm{2}}{A}_{{y}} {t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:{mg}\mathrm{sin}\:\theta−\mu{N}={mA}_{{y}} \\ $$$$\:\:\:{N}={m}\sqrt{{a}^{\mathrm{2}} /\mathrm{4}+{g}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}\: \\ $$$${A}_{{y}} ={g}\mathrm{sin}\:\theta−\mu\sqrt{\frac{{g}^{\mathrm{2}} }{\mathrm{4}\mu^{\mathrm{2}} }\left({s}\mathrm{in}\:^{\mathrm{2}} \theta−\mu^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\right)+{g}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta} \\ $$$${t}=\sqrt{\frac{\mathrm{2}{l}}{{A}_{{y}} }} \\ $$$$\:=\sqrt{\frac{\mathrm{2}{l}}{{g}\mathrm{sin}\:\theta−\frac{{g}}{\mathrm{2}}\sqrt{\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{3}\mu^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}}}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 01/Nov/17

I got that μN≥mgsinθ. But only doubt  is that N is of the form i^∧ +k^∧ . Then  why it should be equated with mgsinθy^∧ ?  Also, how you write 3^(rd)  line of (ii) part?

$${I}\:{got}\:{that}\:\mu{N}\geqslant{mg}\mathrm{sin}\theta.\:{But}\:{only}\:{doubt} \\ $$$${is}\:{that}\:{N}\:{is}\:{of}\:{the}\:{form}\:\overset{\wedge} {{i}}+\overset{\wedge} {{k}}.\:{Then} \\ $$$${why}\:{it}\:{should}\:{be}\:{equated}\:{with}\:{mg}\mathrm{sin}\theta\overset{\wedge} {{y}}? \\ $$$${Also},\:{how}\:{you}\:{write}\:\mathrm{3}^{{rd}} \:{line}\:{of}\:\left({ii}\right)\:{part}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com