Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23556 by Tinkutara last updated on 01/Nov/17

A ball falls vertically on to a floor, with  momentum p, and then bounces  repeatedly, the coefficient of restitution  is e. The total momentum imparted by  the ball to the floor is

$$\mathrm{A}\:\mathrm{ball}\:\mathrm{falls}\:\mathrm{vertically}\:\mathrm{on}\:\mathrm{to}\:\mathrm{a}\:\mathrm{floor},\:\mathrm{with} \\ $$$$\mathrm{momentum}\:{p},\:\mathrm{and}\:\mathrm{then}\:\mathrm{bounces} \\ $$$$\mathrm{repeatedly},\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitution} \\ $$$$\mathrm{is}\:{e}.\:\mathrm{The}\:\mathrm{total}\:\mathrm{momentum}\:\mathrm{imparted}\:\mathrm{by} \\ $$$$\mathrm{the}\:\mathrm{ball}\:\mathrm{to}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{is} \\ $$

Answered by ajfour last updated on 01/Nov/17

J_1 =m(ev_0 +v_0 )  J_2 =m(e^2 v_0 +ev_0 )  ..  ..  Σ_(i=1) ^∞ J_i  =mv_0 (1+e)[1+e+e^2 +...]            =(((1+e)/(1+e)))p .

$${J}_{\mathrm{1}} ={m}\left({ev}_{\mathrm{0}} +{v}_{\mathrm{0}} \right) \\ $$$${J}_{\mathrm{2}} ={m}\left({e}^{\mathrm{2}} {v}_{\mathrm{0}} +{ev}_{\mathrm{0}} \right) \\ $$$$.. \\ $$$$.. \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{J}_{{i}} \:={mv}_{\mathrm{0}} \left(\mathrm{1}+{e}\right)\left[\mathrm{1}+{e}+{e}^{\mathrm{2}} +...\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\frac{\mathrm{1}+{e}}{\mathrm{1}+{e}}\right){p}\:. \\ $$

Commented by Tinkutara last updated on 01/Nov/17

But why not J_1 =mv_0  only?

$$\mathrm{But}\:\mathrm{why}\:\mathrm{not}\:{J}_{\mathrm{1}} ={mv}_{\mathrm{0}} \:\mathrm{only}? \\ $$

Commented by ajfour last updated on 01/Nov/17

the ground did not just catch the  ball, it even threw it back with  speed ev_0 .  ⇒ change in momentum  brought about = m[ev_0 −(−v_0 )].

$${the}\:{ground}\:{did}\:{not}\:{just}\:{catch}\:{the} \\ $$$${ball},\:{it}\:{even}\:{threw}\:{it}\:{back}\:{with} \\ $$$${speed}\:{ev}_{\mathrm{0}} . \\ $$$$\Rightarrow\:{change}\:{in}\:{momentum} \\ $$$${brought}\:{about}\:=\:{m}\left[{ev}_{\mathrm{0}} −\left(−{v}_{\mathrm{0}} \right)\right]. \\ $$

Commented by Tinkutara last updated on 01/Nov/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com