Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 23592 by Tinkutara last updated on 02/Nov/17

Let ABC be a triangle with AB = AC  and ∠BAC = 30°. Let A′ be the reflection  of A in the line BC; B′ be the reflection  of B in the line CA; C′ be the reflection  of C in the line AB. Show that A′, B′, C′  form the vertices of an equilateral  triangle.

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:{AB}\:=\:{AC} \\ $$$$\mathrm{and}\:\angle{BAC}\:=\:\mathrm{30}°.\:\mathrm{Let}\:{A}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{A}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{BC};\:{B}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{B}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{CA};\:{C}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{C}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{AB}.\:\mathrm{Show}\:\mathrm{that}\:{A}',\:{B}',\:{C}' \\ $$$$\mathrm{form}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral} \\ $$$$\mathrm{triangle}. \\ $$

Answered by ajfour last updated on 02/Nov/17

Commented by Tinkutara last updated on 06/Nov/17

Commented by Tinkutara last updated on 06/Nov/17

Commented by ajfour last updated on 02/Nov/17

Given 𝛉=15° , to prove 𝛗=30°

$${Given}\:\boldsymbol{\theta}=\mathrm{15}°\:,\:{to}\:{prove}\:\boldsymbol{\phi}=\mathrm{30}° \\ $$

Commented by ajfour last updated on 02/Nov/17

OB ′=BB ′−OB    =2acos θ−(a/2)sec θ  MB ′=OB ′cos θ      =2acos^2 θ−(a/2)=(a/2)(4cos^2 θ−1)  A′M=OM+OD+A ′D    A′D=AD=(a/2)cot θ , so  A′M=OB ′sin θ+(a/2)tan θ+(a/2)cot θ     =(2acos θ−(a/2)sec θ)sin θ               +(a/2)tan θ+(a/2)cot θ    =(a/2)(4sin θcos θ+cot θ)  tan φ=((MB ′)/(A′M))         =(((a/2)(4cos^2 θ−1))/((a/2)(4sin θcos θ+cot θ)))        =(((a/2)(2+2cos 2θ−1))/((a/2)(2sin 2θ+(√((1+cos 2θ)/(1−cos 2θ))) )))  given θ=15°  ⇒  2θ=30° , so  tan φ=((2+(√3)−1)/(1+(√((2+(√3))/(2−(√3)))))) =(((√3)+1)/(1+2+(√3)))            =(1/(√3)) .  ⇒ 𝛗 =30° and by symmetry      A′C ′=A′B ′  Hence △A′B ′C ′  is equilateral.

$${OB}\:'={BB}\:'−{OB} \\ $$$$\:\:=\mathrm{2}{a}\mathrm{cos}\:\theta−\frac{{a}}{\mathrm{2}}\mathrm{sec}\:\theta \\ $$$${MB}\:'={OB}\:'\mathrm{cos}\:\theta \\ $$$$\:\:\:\:=\mathrm{2}{a}\mathrm{cos}\:^{\mathrm{2}} \theta−\frac{{a}}{\mathrm{2}}=\frac{{a}}{\mathrm{2}}\left(\mathrm{4cos}\:^{\mathrm{2}} \theta−\mathrm{1}\right) \\ $$$${A}'{M}={OM}+{OD}+{A}\:'{D} \\ $$$$\:\:{A}'{D}={AD}=\frac{{a}}{\mathrm{2}}\mathrm{cot}\:\theta\:,\:{so} \\ $$$${A}'{M}={OB}\:'\mathrm{sin}\:\theta+\frac{{a}}{\mathrm{2}}\mathrm{tan}\:\theta+\frac{{a}}{\mathrm{2}}\mathrm{cot}\:\theta \\ $$$$\:\:\:=\left(\mathrm{2}{a}\mathrm{cos}\:\theta−\frac{{a}}{\mathrm{2}}\mathrm{sec}\:\theta\right)\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{{a}}{\mathrm{2}}\mathrm{tan}\:\theta+\frac{{a}}{\mathrm{2}}\mathrm{cot}\:\theta \\ $$$$\:\:=\frac{{a}}{\mathrm{2}}\left(\mathrm{4sin}\:\theta\mathrm{cos}\:\theta+\mathrm{cot}\:\theta\right) \\ $$$$\mathrm{tan}\:\phi=\frac{{MB}\:'}{{A}'{M}} \\ $$$$\:\:\:\:\:\:\:=\frac{\frac{{a}}{\mathrm{2}}\left(\mathrm{4cos}\:^{\mathrm{2}} \theta−\mathrm{1}\right)}{\frac{{a}}{\mathrm{2}}\left(\mathrm{4sin}\:\theta\mathrm{cos}\:\theta+\mathrm{cot}\:\theta\right)} \\ $$$$\:\:\:\:\:\:=\frac{\frac{{a}}{\mathrm{2}}\left(\mathrm{2}+\mathrm{2cos}\:\mathrm{2}\theta−\mathrm{1}\right)}{\frac{{a}}{\mathrm{2}}\left(\mathrm{2sin}\:\mathrm{2}\theta+\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta}}\:\right)} \\ $$$${given}\:\theta=\mathrm{15}°\:\:\Rightarrow\:\:\mathrm{2}\theta=\mathrm{30}°\:,\:{so} \\ $$$$\mathrm{tan}\:\phi=\frac{\mathrm{2}+\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{1}+\sqrt{\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{2}−\sqrt{\mathrm{3}}}}}\:=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{1}+\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:. \\ $$$$\Rightarrow\:\boldsymbol{\phi}\:=\mathrm{30}°\:{and}\:{by}\:{symmetry} \\ $$$$\:\:\:\:{A}'{C}\:'={A}'{B}\:' \\ $$$${Hence}\:\bigtriangleup{A}'{B}\:'{C}\:'\:\:{is}\:\boldsymbol{{equilateral}}. \\ $$$$\:\:\: \\ $$

Commented by Tinkutara last updated on 02/Nov/17

Why AA′ bisects ∠C′A′B′?

$${Why}\:{AA}'\:{bisects}\:\angle{C}'{A}'{B}'? \\ $$

Commented by ajfour last updated on 02/Nov/17

honestly, i dont know.

$${honestly},\:{i}\:{dont}\:{know}. \\ $$

Commented by Tinkutara last updated on 06/Nov/17

Commented by ajfour last updated on 06/Nov/17

using which  app. have you typed  and drawn all these ?

$${using}\:{which}\:\:{app}.\:{have}\:{you}\:{typed} \\ $$$${and}\:{drawn}\:{all}\:{these}\:?\: \\ $$

Commented by Tinkutara last updated on 15/Nov/17

Sir, can you show that BC∥B′C′?  Because I want to know how you  assumed ∠AMC′=90°.

$${Sir},\:{can}\:{you}\:{show}\:{that}\:{BC}\parallel{B}'{C}'? \\ $$$${Because}\:{I}\:{want}\:{to}\:{know}\:{how}\:{you} \\ $$$${assumed}\:\angle{AMC}'=\mathrm{90}°. \\ $$

Commented by ajfour last updated on 15/Nov/17

let x axis be along BC with D  as origin. Since △ABC is  isosceles, ∠OBC = ∠OCB  further OB = OC          and BE =CF  so  2BE = 2CF  ⇒      BB ′ =CC ′ =l  (say)       Hence y_(B ′)  =y_(C ′) =lsin θ  hence   B ′C ′ // BC .  And AD ⊥ BC   ⇒   ∠AMC ′ = ∠AMB ′ = 90° .

$${let}\:{x}\:{axis}\:{be}\:{along}\:{BC}\:{with}\:{D} \\ $$$${as}\:{origin}.\:{Since}\:\bigtriangleup{ABC}\:{is} \\ $$$${isosceles},\:\angle{OBC}\:=\:\angle{OCB} \\ $$$${further}\:{OB}\:=\:{OC} \\ $$$$\:\:\:\:\:\:\:\:{and}\:{BE}\:={CF} \\ $$$${so}\:\:\mathrm{2}{BE}\:=\:\mathrm{2}{CF} \\ $$$$\Rightarrow\:\:\:\:\:\:{BB}\:'\:={CC}\:'\:={l}\:\:\left({say}\right) \\ $$$$\:\:\:\:\:{Hence}\:{y}_{{B}\:'} \:={y}_{{C}\:'} ={l}\mathrm{sin}\:\theta \\ $$$${hence}\:\:\:{B}\:'{C}\:'\://\:{BC}\:. \\ $$$${And}\:{AD}\:\bot\:{BC}\: \\ $$$$\Rightarrow\:\:\:\angle{AMC}\:'\:=\:\angle{AMB}\:'\:=\:\mathrm{90}°\:. \\ $$

Commented by Tinkutara last updated on 15/Nov/17

What is y_(B′) ?

$${What}\:{is}\:{y}_{{B}'} ? \\ $$

Commented by ajfour last updated on 15/Nov/17

I said, lets take BC as x axis  with D as origin.  y_(B ′)  is y coordinate of B ′ then.

$${I}\:{said},\:{lets}\:{take}\:{BC}\:{as}\:{x}\:{axis} \\ $$$${with}\:{D}\:{as}\:{origin}. \\ $$$${y}_{{B}\:'} \:{is}\:{y}\:{coordinate}\:{of}\:{B}\:'\:{then}. \\ $$

Commented by Tinkutara last updated on 15/Nov/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com