Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23632 by ajfour last updated on 02/Nov/17

Commented by mrW1 last updated on 03/Nov/17

α_A =(dω_A /dt)=(dω_A /dθ)×(dθ/dt)=(dω_A /dθ)×ω≠(dω_A /dθ)×ω_A

$$\alpha_{\mathrm{A}} =\frac{\mathrm{d}\omega_{\mathrm{A}} }{\mathrm{dt}}=\frac{\mathrm{d}\omega_{\mathrm{A}} }{\mathrm{d}\theta}×\frac{\mathrm{d}\theta}{\mathrm{dt}}=\frac{\mathrm{d}\omega_{\mathrm{A}} }{\mathrm{d}\theta}×\omega\neq\frac{\mathrm{d}\omega_{\mathrm{A}} }{\mathrm{d}\theta}×\omega_{\mathrm{A}} \\ $$

Commented by ajfour last updated on 02/Nov/17

If initially θ=θ_0  (a little less   than 90°, when system was released,  find θ when disc A breaks contact  with the wall. Friction is sufficient  at wall and ground surface to   permit pure rolling of the discs.

$${If}\:{initially}\:\theta=\theta_{\mathrm{0}} \:\left({a}\:{little}\:{less}\:\right. \\ $$$${than}\:\mathrm{90}°,\:{when}\:{system}\:{was}\:{released}, \\ $$$${find}\:\theta\:{when}\:{disc}\:{A}\:{breaks}\:{contact} \\ $$$${with}\:{the}\:{wall}.\:{Friction}\:{is}\:{sufficient} \\ $$$${at}\:{wall}\:{and}\:{ground}\:{surface}\:{to}\: \\ $$$${permit}\:{pure}\:{rolling}\:{of}\:{the}\:{discs}. \\ $$

Commented by mrW1 last updated on 03/Nov/17

(R+Lcos θ,R)=center of disc B  (R,R+Lsin θ)=center of disc A  (R+(L/2)cos θ,R+(L/2)sin θ)=center of rod C  ω=(dθ/dt) (=ω_C )  v_A =(dy_A /dt)=Lcos θ ω  u_B =(dx_B /dt)=−Lsin θ ω  v_C =(L/2)cos θ ω  u_C =−(L/2)sin θ ω  ω_A =(v_A /R)=(L/R)cos θ ω  ω_B =(u_B /R)=−(L/R)sin θ ω  I_A =I_B =((MR^2 )/2)  I_C =((mL^2 )/(12))  KE_A =(1/2)ML^2 cos^2  θ ω^2 +(1/2)×((MR^2 )/2)×(L^2 /R^2 )cos^2  θ ω^2 =((3ML^2 cos^2  θ)/4) ω^2   KE_B =(1/2)ML^2 sin^2  θ ω^2 +(1/2)×((MR^2 )/2)×(L^2 /R^2 )sin^2  θ ω^2 =((3ML^2 sin^2  θ)/4) ω^2   KE_C =(1/2)m(L^2 /4) ω^2 +(1/2)×((mL^2 )/(12)) ω^2 =((mL^2 )/6) ω^2   KE=(((3M)/4)+(m/6))L^2 ω^2   PE=−(M+(m/2))gL(sin θ_0 −sin θ)  (((3M)/4)+(m/6))L^2 ω^2 =(M+(m/2))gL(sin θ_0 −sin θ)  (9(M/m)+2)Lω^2 =(12(M/m)+6)g(sin θ_0 −sin θ)  ω^2 =(g/L)×((12(M/m)+6)/(9(M/m)+2))×(sin θ_0 −sin θ)  with a^2 =(g/L)×((12(M/m)+6)/(9(M/m)+2)), b=sin θ_0   ω^2 =a^2 (b−sin θ)  ⇒ω=a(√(b−sin θ))  ω_A =(L/R)cos θ ω=((aL)/R)cos θ(√(b−sin θ))  α_A =ω(dω_A /dθ)=((a^2 L)/R)(√(b−sin θ))×[−sin θ(√(b−sin θ))−cos θ((cos θ)/(2(√(b−sin θ))))]  α_A =((a^2 L)/(2R))×[3sin^2  θ−2bsin θ−1]  when the contact with wall breaks,  I_A α_A =0  ⇒3sin^2  θ−2bsin θ−1=0  ⇒sin θ=((b+(√(b^2 +3)))/3)=((sin θ_0 +(√(sin^2  θ_0 +3)))/3)  ⇒θ=sin^(−1) [((sin θ_0 +(√(sin^2  θ_0 +3)))/3)]>θ_0     ...but θ should < θ_0 , so something is wrong ....  ... or the contact will not break! ....

$$\left(\mathrm{R}+\mathrm{Lcos}\:\theta,\mathrm{R}\right)=\mathrm{center}\:\mathrm{of}\:\mathrm{disc}\:\mathrm{B} \\ $$$$\left(\mathrm{R},\mathrm{R}+\mathrm{Lsin}\:\theta\right)=\mathrm{center}\:\mathrm{of}\:\mathrm{disc}\:\mathrm{A} \\ $$$$\left(\mathrm{R}+\frac{\mathrm{L}}{\mathrm{2}}\mathrm{cos}\:\theta,\mathrm{R}+\frac{\mathrm{L}}{\mathrm{2}}\mathrm{sin}\:\theta\right)=\mathrm{center}\:\mathrm{of}\:\mathrm{rod}\:\mathrm{C} \\ $$$$\omega=\frac{\mathrm{d}\theta}{\mathrm{dt}}\:\left(=\omega_{\mathrm{C}} \right) \\ $$$$\mathrm{v}_{\mathrm{A}} =\frac{\mathrm{dy}_{\mathrm{A}} }{\mathrm{dt}}=\mathrm{Lcos}\:\theta\:\omega \\ $$$$\mathrm{u}_{\mathrm{B}} =\frac{\mathrm{dx}_{\mathrm{B}} }{\mathrm{dt}}=−\mathrm{Lsin}\:\theta\:\omega \\ $$$$\mathrm{v}_{\mathrm{C}} =\frac{\mathrm{L}}{\mathrm{2}}\mathrm{cos}\:\theta\:\omega \\ $$$$\mathrm{u}_{\mathrm{C}} =−\frac{\mathrm{L}}{\mathrm{2}}\mathrm{sin}\:\theta\:\omega \\ $$$$\omega_{\mathrm{A}} =\frac{\mathrm{v}_{\mathrm{A}} }{\mathrm{R}}=\frac{\mathrm{L}}{\mathrm{R}}\mathrm{cos}\:\theta\:\omega \\ $$$$\omega_{\mathrm{B}} =\frac{\mathrm{u}_{\mathrm{B}} }{\mathrm{R}}=−\frac{\mathrm{L}}{\mathrm{R}}\mathrm{sin}\:\theta\:\omega \\ $$$$\mathrm{I}_{\mathrm{A}} =\mathrm{I}_{\mathrm{B}} =\frac{\mathrm{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{I}_{\mathrm{C}} =\frac{\mathrm{mL}^{\mathrm{2}} }{\mathrm{12}} \\ $$$$\mathrm{KE}_{\mathrm{A}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ML}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\:\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{MR}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{L}^{\mathrm{2}} }{\mathrm{R}^{\mathrm{2}} }\mathrm{cos}^{\mathrm{2}} \:\theta\:\omega^{\mathrm{2}} =\frac{\mathrm{3ML}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{4}}\:\omega^{\mathrm{2}} \\ $$$$\mathrm{KE}_{\mathrm{B}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ML}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta\:\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{MR}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{L}^{\mathrm{2}} }{\mathrm{R}^{\mathrm{2}} }\mathrm{sin}^{\mathrm{2}} \:\theta\:\omega^{\mathrm{2}} =\frac{\mathrm{3ML}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{4}}\:\omega^{\mathrm{2}} \\ $$$$\mathrm{KE}_{\mathrm{C}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{m}\frac{\mathrm{L}^{\mathrm{2}} }{\mathrm{4}}\:\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{mL}^{\mathrm{2}} }{\mathrm{12}}\:\omega^{\mathrm{2}} =\frac{\mathrm{mL}^{\mathrm{2}} }{\mathrm{6}}\:\omega^{\mathrm{2}} \\ $$$$\mathrm{KE}=\left(\frac{\mathrm{3M}}{\mathrm{4}}+\frac{\mathrm{m}}{\mathrm{6}}\right)\mathrm{L}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$$\mathrm{PE}=−\left(\mathrm{M}+\frac{\mathrm{m}}{\mathrm{2}}\right)\mathrm{gL}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right) \\ $$$$\left(\frac{\mathrm{3M}}{\mathrm{4}}+\frac{\mathrm{m}}{\mathrm{6}}\right)\mathrm{L}^{\mathrm{2}} \omega^{\mathrm{2}} =\left(\mathrm{M}+\frac{\mathrm{m}}{\mathrm{2}}\right)\mathrm{gL}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right) \\ $$$$\left(\mathrm{9}\frac{\mathrm{M}}{\mathrm{m}}+\mathrm{2}\right)\mathrm{L}\omega^{\mathrm{2}} =\left(\mathrm{12}\frac{\mathrm{M}}{\mathrm{m}}+\mathrm{6}\right)\mathrm{g}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right) \\ $$$$\omega^{\mathrm{2}} =\frac{\mathrm{g}}{\mathrm{L}}×\frac{\mathrm{12}\frac{\mathrm{M}}{\mathrm{m}}+\mathrm{6}}{\mathrm{9}\frac{\mathrm{M}}{\mathrm{m}}+\mathrm{2}}×\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{with}\:\mathrm{a}^{\mathrm{2}} =\frac{\mathrm{g}}{\mathrm{L}}×\frac{\mathrm{12}\frac{\mathrm{M}}{\mathrm{m}}+\mathrm{6}}{\mathrm{9}\frac{\mathrm{M}}{\mathrm{m}}+\mathrm{2}},\:\mathrm{b}=\mathrm{sin}\:\theta_{\mathrm{0}} \\ $$$$\omega^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \left(\mathrm{b}−\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow\omega=\mathrm{a}\sqrt{\mathrm{b}−\mathrm{sin}\:\theta} \\ $$$$\omega_{\mathrm{A}} =\frac{\mathrm{L}}{\mathrm{R}}\mathrm{cos}\:\theta\:\omega=\frac{\mathrm{aL}}{\mathrm{R}}\mathrm{cos}\:\theta\sqrt{\mathrm{b}−\mathrm{sin}\:\theta} \\ $$$$\alpha_{\mathrm{A}} =\omega\frac{\mathrm{d}\omega_{\mathrm{A}} }{\mathrm{d}\theta}=\frac{\mathrm{a}^{\mathrm{2}} \mathrm{L}}{\mathrm{R}}\sqrt{\mathrm{b}−\mathrm{sin}\:\theta}×\left[−\mathrm{sin}\:\theta\sqrt{\mathrm{b}−\mathrm{sin}\:\theta}−\mathrm{cos}\:\theta\frac{\mathrm{cos}\:\theta}{\mathrm{2}\sqrt{\mathrm{b}−\mathrm{sin}\:\theta}}\right] \\ $$$$\alpha_{\mathrm{A}} =\frac{\mathrm{a}^{\mathrm{2}} \mathrm{L}}{\mathrm{2R}}×\left[\mathrm{3sin}^{\mathrm{2}} \:\theta−\mathrm{2bsin}\:\theta−\mathrm{1}\right] \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{contact}\:\mathrm{with}\:\mathrm{wall}\:\mathrm{breaks}, \\ $$$$\mathrm{I}_{\mathrm{A}} \alpha_{\mathrm{A}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{3sin}^{\mathrm{2}} \:\theta−\mathrm{2bsin}\:\theta−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\mathrm{b}+\sqrt{\mathrm{b}^{\mathrm{2}} +\mathrm{3}}}{\mathrm{3}}=\frac{\mathrm{sin}\:\theta_{\mathrm{0}} +\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{0}} +\mathrm{3}}}{\mathrm{3}} \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \left[\frac{\mathrm{sin}\:\theta_{\mathrm{0}} +\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{0}} +\mathrm{3}}}{\mathrm{3}}\right]>\theta_{\mathrm{0}} \\ $$$$ \\ $$$$...\mathrm{but}\:\theta\:\mathrm{should}\:<\:\theta_{\mathrm{0}} ,\:\mathrm{so}\:\mathrm{something}\:\mathrm{is}\:\mathrm{wrong}\:.... \\ $$$$...\:\mathrm{or}\:\mathrm{the}\:\mathrm{contact}\:\mathrm{will}\:\mathrm{not}\:\mathrm{break}!\:.... \\ $$

Commented by ajfour last updated on 03/Nov/17

Thank you Sir, let me also  attempt, after  your guidelines.  But how did you infer θ > θ_0   i dont think so, your answer  seems correct and logical, just  that α_A =0 doesnot necessarily  imply that contact with wall  breaks, a_A  and hence friction  at wall be zero for α_A  to be zero..  contact might still persist.  there is just a good chance its not  certain.

$${Thank}\:{you}\:{Sir},\:{let}\:{me}\:{also} \\ $$$${attempt},\:{after}\:\:{your}\:{guidelines}. \\ $$$${But}\:{how}\:{did}\:{you}\:{infer}\:\theta\:>\:\theta_{\mathrm{0}} \\ $$$${i}\:{dont}\:{think}\:{so},\:{your}\:{answer} \\ $$$${seems}\:{correct}\:{and}\:{logical},\:{just} \\ $$$${that}\:\alpha_{{A}} =\mathrm{0}\:{doesnot}\:{necessarily} \\ $$$${imply}\:{that}\:{contact}\:{with}\:{wall} \\ $$$${breaks},\:{a}_{{A}} \:{and}\:{hence}\:{friction} \\ $$$${at}\:{wall}\:{be}\:{zero}\:{for}\:\alpha_{{A}} \:{to}\:{be}\:{zero}.. \\ $$$${contact}\:{might}\:{still}\:{persist}. \\ $$$${there}\:{is}\:{just}\:{a}\:{good}\:{chance}\:{its}\:{not} \\ $$$${certain}. \\ $$

Commented by ajfour last updated on 03/Nov/17

α_A =(dω_A /dt)=(a_A /R)=(1/R)(dv_A /dt)       =(1/R)(d/dt)(ωLcos θ)      =(L/R)(−ω^2 sin θ+αcos θ)   how can you write α_A =ω(dω_A /dθ)  α_A  ≠ ω_A (dω_A /dθ)  , even.  It has to do  with angle turned by disc A, Sir!

$$\alpha_{{A}} =\frac{{d}\omega_{{A}} }{{dt}}=\frac{{a}_{{A}} }{{R}}=\frac{\mathrm{1}}{{R}}\frac{{dv}_{{A}} }{{dt}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{{R}}\frac{{d}}{{dt}}\left(\omega{L}\mathrm{cos}\:\theta\right) \\ $$$$\:\:\:\:=\frac{{L}}{{R}}\left(−\omega^{\mathrm{2}} \mathrm{sin}\:\theta+\alpha\mathrm{cos}\:\theta\right) \\ $$$$\:{how}\:{can}\:{you}\:{write}\:\alpha_{{A}} =\omega\frac{{d}\omega_{{A}} }{{d}\theta} \\ $$$$\alpha_{{A}} \:\neq\:\omega_{{A}} \frac{{d}\omega_{{A}} }{{d}\theta}\:\:,\:{even}.\:\:{It}\:{has}\:{to}\:{do} \\ $$$${with}\:{angle}\:{turned}\:{by}\:{disc}\:{A},\:{Sir}! \\ $$

Commented by mrW1 last updated on 03/Nov/17

why I said θ>θ_0 :  sin θ=((b+(√(b^2 +3)))/3) with b=sin θ_0 <1  sin θ=((b+(√(b^2 +3)))/3)>((b+(√(b^2 +3b^2 )))/3)=((b+2b)/3)=b  ⇒sin θ>sin θ_0   ⇒θ>θ_0

$$\mathrm{why}\:\mathrm{I}\:\mathrm{said}\:\theta>\theta_{\mathrm{0}} : \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{b}+\sqrt{\mathrm{b}^{\mathrm{2}} +\mathrm{3}}}{\mathrm{3}}\:\mathrm{with}\:\mathrm{b}=\mathrm{sin}\:\theta_{\mathrm{0}} <\mathrm{1} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{b}+\sqrt{\mathrm{b}^{\mathrm{2}} +\mathrm{3}}}{\mathrm{3}}>\frac{\mathrm{b}+\sqrt{\mathrm{b}^{\mathrm{2}} +\mathrm{3b}^{\mathrm{2}} }}{\mathrm{3}}=\frac{\mathrm{b}+\mathrm{2b}}{\mathrm{3}}=\mathrm{b} \\ $$$$\Rightarrow\mathrm{sin}\:\theta>\mathrm{sin}\:\theta_{\mathrm{0}} \\ $$$$\Rightarrow\theta>\theta_{\mathrm{0}} \\ $$

Commented by mrW1 last updated on 03/Nov/17

To ajfour sir:  My consideration is: when the contact  with the wall breaks, there is no   normal force N and no friction force f  between disc A and the wall. no  friction force f means α_A =0. but  α_A =0 doesn′t mean N=0, and if N≠0, it  means there is a contact.  but we can always say: if α_A ≠0, then  f≠0, that means there is contact.  according to my result, α_A  ≠0 for  0<θ<θ_0 , that means there is always  contact with the wall.  I am really confused.

$$\mathrm{To}\:\mathrm{ajfour}\:\mathrm{sir}: \\ $$$$\mathrm{My}\:\mathrm{consideration}\:\mathrm{is}:\:\mathrm{when}\:\mathrm{the}\:\mathrm{contact} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{breaks},\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\: \\ $$$$\mathrm{normal}\:\mathrm{force}\:\mathrm{N}\:\mathrm{and}\:\mathrm{no}\:\mathrm{friction}\:\mathrm{force}\:\mathrm{f} \\ $$$$\mathrm{between}\:\mathrm{disc}\:\mathrm{A}\:\mathrm{and}\:\mathrm{the}\:\mathrm{wall}.\:\mathrm{no} \\ $$$$\mathrm{friction}\:\mathrm{force}\:\mathrm{f}\:\mathrm{means}\:\alpha_{\mathrm{A}} =\mathrm{0}.\:\mathrm{but} \\ $$$$\alpha_{\mathrm{A}} =\mathrm{0}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{mean}\:\mathrm{N}=\mathrm{0},\:\mathrm{and}\:\mathrm{if}\:\mathrm{N}\neq\mathrm{0},\:\mathrm{it} \\ $$$$\mathrm{means}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{contact}. \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{can}\:\mathrm{always}\:\mathrm{say}:\:\mathrm{if}\:\alpha_{\mathrm{A}} \neq\mathrm{0},\:\mathrm{then} \\ $$$$\mathrm{f}\neq\mathrm{0},\:\mathrm{that}\:\mathrm{means}\:\mathrm{there}\:\mathrm{is}\:\mathrm{contact}. \\ $$$$\mathrm{according}\:\mathrm{to}\:\mathrm{my}\:\mathrm{result},\:\alpha_{\mathrm{A}} \:\neq\mathrm{0}\:\mathrm{for} \\ $$$$\mathrm{0}<\theta<\theta_{\mathrm{0}} ,\:\mathrm{that}\:\mathrm{means}\:\mathrm{there}\:\mathrm{is}\:\mathrm{always} \\ $$$$\mathrm{contact}\:\mathrm{with}\:\mathrm{the}\:\mathrm{wall}. \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{really}\:\mathrm{confused}. \\ $$

Commented by mrW1 last updated on 03/Nov/17

ω=a(√(b−sin θ))  α=(dω/dt)=ω(dω/dθ)=a^2 (√(b−sin θ))×((−cos θ)/(2(√(b−sin θ))))=−((a^2 cos θ)/2)  α_A =....=(dω_A /dt)=(L/R)(−ω^2 sin θ+αcos θ)  =(L/R)[−a^2 (b−sin θ)sin θ−((a^2 cos^2  θ)/2)]  =((a^2 L)/(2R))[3sin^2  θ−2bsin θ−1]  this is the same as I got.

$$\omega=\mathrm{a}\sqrt{\mathrm{b}−\mathrm{sin}\:\theta} \\ $$$$\alpha=\frac{\mathrm{d}\omega}{\mathrm{dt}}=\omega\frac{\mathrm{d}\omega}{\mathrm{d}\theta}=\mathrm{a}^{\mathrm{2}} \sqrt{\mathrm{b}−\mathrm{sin}\:\theta}×\frac{−\mathrm{cos}\:\theta}{\mathrm{2}\sqrt{\mathrm{b}−\mathrm{sin}\:\theta}}=−\frac{\mathrm{a}^{\mathrm{2}} \mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$$\alpha_{\mathrm{A}} =....=\frac{\mathrm{d}\omega_{\mathrm{A}} }{\mathrm{dt}}=\frac{{L}}{{R}}\left(−\omega^{\mathrm{2}} \mathrm{sin}\:\theta+\alpha\mathrm{cos}\:\theta\right) \\ $$$$=\frac{\mathrm{L}}{\mathrm{R}}\left[−\mathrm{a}^{\mathrm{2}} \left(\mathrm{b}−\mathrm{sin}\:\theta\right)\mathrm{sin}\:\theta−\frac{\mathrm{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{2}}\right] \\ $$$$=\frac{\mathrm{a}^{\mathrm{2}} \mathrm{L}}{\mathrm{2R}}\left[\mathrm{3sin}^{\mathrm{2}} \:\theta−\mathrm{2bsin}\:\theta−\mathrm{1}\right] \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{I}\:\mathrm{got}. \\ $$

Commented by ajfour last updated on 03/Nov/17

I disagree, contact breaks as soon  as disc A develops acceleration  towards right, this takes place  because   (a_B +𝛚^2 lcos 𝛉) becomes > 𝛂lsin 𝛉  as soon as this happens contact  breaks and disc A is no more  rolling so 𝛚_A = (v_A /R)   is no more  in applicable.  I shall need some time to post  my analysis but presently i shall  say that wben contact breaks      sin 𝛉=(4/7)((((M/m)+(1/3))/((M/m)+(2/7))))sin θ_0  .

$${I}\:{disagree},\:{contact}\:{breaks}\:{as}\:{soon} \\ $$$${as}\:{disc}\:{A}\:{develops}\:{acceleration} \\ $$$${towards}\:{right},\:{this}\:{takes}\:{place} \\ $$$${because}\: \\ $$$$\left(\boldsymbol{{a}}_{\boldsymbol{{B}}} +\boldsymbol{\omega}^{\mathrm{2}} \boldsymbol{{l}}\mathrm{cos}\:\boldsymbol{\theta}\right)\:{becomes}\:>\:\boldsymbol{\alpha{l}}\mathrm{sin}\:\boldsymbol{\theta} \\ $$$${as}\:{soon}\:{as}\:{this}\:{happens}\:{contact} \\ $$$${breaks}\:{and}\:{disc}\:{A}\:{is}\:{no}\:{more} \\ $$$${rolling}\:{so}\:\boldsymbol{\omega}_{\boldsymbol{{A}}} =\:\frac{\boldsymbol{{v}}_{\boldsymbol{{A}}} }{{R}}\:\:\:{is}\:{no}\:{more} \\ $$$${in}\:{applicable}. \\ $$$${I}\:{shall}\:{need}\:{some}\:{time}\:{to}\:{post} \\ $$$${my}\:{analysis}\:{but}\:{presently}\:{i}\:{shall} \\ $$$${say}\:{that}\:{wben}\:{contact}\:{breaks} \\ $$$$\:\:\:\:\mathrm{sin}\:\boldsymbol{\theta}=\frac{\mathrm{4}}{\mathrm{7}}\left(\frac{\frac{{M}}{{m}}+\frac{\mathrm{1}}{\mathrm{3}}}{\frac{{M}}{{m}}+\frac{\mathrm{2}}{\mathrm{7}}}\right)\mathrm{sin}\:\theta_{\mathrm{0}} \:. \\ $$$$\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com