Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23666 by Tinkutara last updated on 03/Nov/17

A uniform rope of length L and mass  per unit λ having one end fixed with  the ceiling is released from rest. Find  the tension in the fixed end as a function  of the distance travelled by the movable  end.

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{rope}\:\mathrm{of}\:\mathrm{length}\:{L}\:\mathrm{and}\:\mathrm{mass} \\ $$$$\mathrm{per}\:\mathrm{unit}\:\lambda\:\mathrm{having}\:\mathrm{one}\:\mathrm{end}\:\mathrm{fixed}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{ceiling}\:\mathrm{is}\:\mathrm{released}\:\mathrm{from}\:\mathrm{rest}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{tension}\:\mathrm{in}\:\mathrm{the}\:\mathrm{fixed}\:\mathrm{end}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{travelled}\:\mathrm{by}\:\mathrm{the}\:\mathrm{movable} \\ $$$$\mathrm{end}. \\ $$

Commented by Tinkutara last updated on 03/Nov/17

Answered by ajfour last updated on 03/Nov/17

    F = ((𝛌gl)/2)(1+((3x)/l)) .

$$\:\:\:\:{F}\:=\:\frac{\boldsymbol{\lambda{gl}}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{3}\boldsymbol{{x}}}{\boldsymbol{{l}}}\right)\:. \\ $$

Answered by ajfour last updated on 03/Nov/17

Commented by ajfour last updated on 04/Nov/17

mg−F=(dp/dt)               =(d/dt)[(m/l)(((l−x)/2))v]          =(m/(2l))(d/dt)[(l−x)v]    =(m/(2l))[−v^2 +(l−x)g]=(m/(2l))[−2gx−gx+gl]      ⇒   F= mg+(m/(2l))(3gx−gl)                 =((mg)/2)(1+((3x)/l))               F =((𝛌lg)/2)(1+((3x)/l)) .

$${mg}−{F}=\frac{{dp}}{{dt}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{d}}{{dt}}\left[\frac{{m}}{{l}}\left(\frac{{l}−{x}}{\mathrm{2}}\right){v}\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{{m}}{\mathrm{2}{l}}\frac{{d}}{{dt}}\left[\left({l}−{x}\right){v}\right] \\ $$$$\:\:=\frac{{m}}{\mathrm{2}{l}}\left[−{v}^{\mathrm{2}} +\left({l}−{x}\right){g}\right]=\frac{{m}}{\mathrm{2}{l}}\left[−\mathrm{2}{gx}−{gx}+{gl}\right] \\ $$$$\:\:\:\:\Rightarrow\:\:\:{F}=\:{mg}+\frac{{m}}{\mathrm{2}{l}}\left(\mathrm{3}{gx}−{gl}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{mg}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{3}{x}}{{l}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{F}}\:=\frac{\boldsymbol{\lambda{lg}}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{3}\boldsymbol{{x}}}{\boldsymbol{{l}}}\right)\:. \\ $$

Commented by Tinkutara last updated on 04/Nov/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com