Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23707 by Tinkutara last updated on 04/Nov/17

Two blocks A and B of mass 1 kg and  2 kg respectively are connected by a  string, passing over a light frictionless  pulley. Both the blocks are resting on a  horizontal floor and the pulley is held  such that string remains just taut. At  time t = 0, a force F = 20t N, starts  acting on the pulley along vertically  upward direction. Calculate vertical  displacement of the pulley upto the  instant when B loses contact with the  floor.

$$\mathrm{Two}\:\mathrm{blocks}\:{A}\:\mathrm{and}\:{B}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}\:\mathrm{kg}\:\mathrm{and} \\ $$$$\mathrm{2}\:\mathrm{kg}\:\mathrm{respectively}\:\mathrm{are}\:\mathrm{connected}\:\mathrm{by}\:\mathrm{a} \\ $$$$\mathrm{string},\:\mathrm{passing}\:\mathrm{over}\:\mathrm{a}\:\mathrm{light}\:\mathrm{frictionless} \\ $$$$\mathrm{pulley}.\:\mathrm{Both}\:\mathrm{the}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{resting}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{floor}\:\mathrm{and}\:\mathrm{the}\:\mathrm{pulley}\:\mathrm{is}\:\mathrm{held} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{string}\:\mathrm{remains}\:\mathrm{just}\:\mathrm{taut}.\:\mathrm{At} \\ $$$$\mathrm{time}\:{t}\:=\:\mathrm{0},\:\mathrm{a}\:\mathrm{force}\:{F}\:=\:\mathrm{20}{t}\:\mathrm{N},\:\mathrm{starts} \\ $$$$\mathrm{acting}\:\mathrm{on}\:\mathrm{the}\:\mathrm{pulley}\:\mathrm{along}\:\mathrm{vertically} \\ $$$$\mathrm{upward}\:\mathrm{direction}.\:\mathrm{Calculate}\:\mathrm{vertical} \\ $$$$\mathrm{displacement}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pulley}\:\mathrm{upto}\:\mathrm{the} \\ $$$$\mathrm{instant}\:\mathrm{when}\:{B}\:\mathrm{loses}\:\mathrm{contact}\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{floor}. \\ $$

Commented by Tinkutara last updated on 04/Nov/17

Commented by mrW1 last updated on 05/Nov/17

I will try.    Force in string is T.  T=(F/2)=((20t)/2)=10t  a_A =((T−m_A g)/m_A )=((10t−m_A g)/m_A )=((10t−10)/1)=10(t−1)  a_B =((T−m_B g)/m_B )=((10t−m_B g)/m_B )=((10t−20)/2)=5(t−2)  we see when t≥1 mass A is off ground  and when t≥2 mass B is off ground.    s_P =displacement of pulley  v_P =velocity of pulley  a_P =acceleration of pulley  generally a_P =((a_A +a_B )/2)    Phase (1): 0≤t≤1  both blocks are on ground, no motion.  a_P =0, v_P =0, s_P =0.    Phase (2): 1≤t≤2  block A is off ground with a_A =10(t−1).  block B is still on ground a_B =0.  a_P =((10(t−1))/2)=5(t−1)  ⇒(dv_P /dt)=5(t−1)  ∫_0 ^( v_P ) dv_P =5∫_1 ^t (t−1)dt  v_P =(5/2)×[(t−1)^2 ]_1 ^t =((5(t−1)^2 )/2)  ⇒(ds_P /dt)=((5(t−1)^2 )/2)  ∫_0 ^( s_P ) ds_P =(5/2)∫_1 ^( t) (t−1)^2 dt  s_P =(5/6)[(t−1)^3 ]_1 ^t =((5(t−1)^3 )/6)    at t=2  v_P (2)=(5/2)(2−1)^2 =(5/2) m/s  s_P (2)=(5/6)(2−1)^3 =(5/6) m  i.e. as the block B takes off from ground  the pulley has a displacement of (5/6) m.    Phase (3): 2≤t  both blocks are off ground.  a_P =((10(t−1)+5(t−1))/2)=((15(t−1))/2)  (dv_P /dt)=((15)/2)(t−1)  ∫_(5/2) ^( v_P ) dv_P =((15)/2)∫_2 ^( t) (t−1)dt  v_p −(5/2)=((15)/4)[(t−1)^2 −1]  ⇒v_P =(5/4)[3(t−1)^2 −1]  (ds_P /dt)=(5/4)[3(t−1)^2 −1]  ∫_(6/5) ^s_P  ds_P =(5/4)∫_2 ^( t) [3(t−1)^2 −1]dt  s_P −(5/6)=(5/4)[(t−1)^3 −1]−(5/4)(t−2)  s_P =(5/4)t(t−1)(t−2)+(5/6)

$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}. \\ $$$$ \\ $$$$\mathrm{Force}\:\mathrm{in}\:\mathrm{string}\:\mathrm{is}\:\mathrm{T}. \\ $$$$\mathrm{T}=\frac{\mathrm{F}}{\mathrm{2}}=\frac{\mathrm{20t}}{\mathrm{2}}=\mathrm{10t} \\ $$$$\mathrm{a}_{\mathrm{A}} =\frac{\mathrm{T}−\mathrm{m}_{\mathrm{A}} \mathrm{g}}{\mathrm{m}_{\mathrm{A}} }=\frac{\mathrm{10t}−\mathrm{m}_{\mathrm{A}} \mathrm{g}}{\mathrm{m}_{\mathrm{A}} }=\frac{\mathrm{10t}−\mathrm{10}}{\mathrm{1}}=\mathrm{10}\left(\mathrm{t}−\mathrm{1}\right) \\ $$$$\mathrm{a}_{\mathrm{B}} =\frac{\mathrm{T}−\mathrm{m}_{\mathrm{B}} \mathrm{g}}{\mathrm{m}_{\mathrm{B}} }=\frac{\mathrm{10t}−\mathrm{m}_{\mathrm{B}} \mathrm{g}}{\mathrm{m}_{\mathrm{B}} }=\frac{\mathrm{10t}−\mathrm{20}}{\mathrm{2}}=\mathrm{5}\left(\mathrm{t}−\mathrm{2}\right) \\ $$$$\mathrm{we}\:\mathrm{see}\:\mathrm{when}\:\mathrm{t}\geqslant\mathrm{1}\:\mathrm{mass}\:\mathrm{A}\:\mathrm{is}\:\mathrm{off}\:\mathrm{ground} \\ $$$$\mathrm{and}\:\mathrm{when}\:\mathrm{t}\geqslant\mathrm{2}\:\mathrm{mass}\:\mathrm{B}\:\mathrm{is}\:\mathrm{off}\:\mathrm{ground}. \\ $$$$ \\ $$$$\mathrm{s}_{\mathrm{P}} =\mathrm{displacement}\:\mathrm{of}\:\mathrm{pulley} \\ $$$$\mathrm{v}_{\mathrm{P}} =\mathrm{velocity}\:\mathrm{of}\:\mathrm{pulley} \\ $$$$\mathrm{a}_{\mathrm{P}} =\mathrm{acceleration}\:\mathrm{of}\:\mathrm{pulley} \\ $$$$\mathrm{generally}\:\mathrm{a}_{\mathrm{P}} =\frac{\mathrm{a}_{\mathrm{A}} +\mathrm{a}_{\mathrm{B}} }{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Phase}\:\left(\mathrm{1}\right):\:\mathrm{0}\leqslant\mathrm{t}\leqslant\mathrm{1} \\ $$$$\mathrm{both}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{on}\:\mathrm{ground},\:\mathrm{no}\:\mathrm{motion}. \\ $$$$\mathrm{a}_{\mathrm{P}} =\mathrm{0},\:\mathrm{v}_{\mathrm{P}} =\mathrm{0},\:\mathrm{s}_{\mathrm{P}} =\mathrm{0}. \\ $$$$ \\ $$$$\mathrm{Phase}\:\left(\mathrm{2}\right):\:\mathrm{1}\leqslant\mathrm{t}\leqslant\mathrm{2} \\ $$$$\mathrm{block}\:\mathrm{A}\:\mathrm{is}\:\mathrm{off}\:\mathrm{ground}\:\mathrm{with}\:\mathrm{a}_{\mathrm{A}} =\mathrm{10}\left(\mathrm{t}−\mathrm{1}\right). \\ $$$$\mathrm{block}\:\mathrm{B}\:\mathrm{is}\:\mathrm{still}\:\mathrm{on}\:\mathrm{ground}\:\mathrm{a}_{\mathrm{B}} =\mathrm{0}. \\ $$$$\mathrm{a}_{\mathrm{P}} =\frac{\mathrm{10}\left(\mathrm{t}−\mathrm{1}\right)}{\mathrm{2}}=\mathrm{5}\left(\mathrm{t}−\mathrm{1}\right) \\ $$$$\Rightarrow\frac{\mathrm{dv}_{\mathrm{P}} }{\mathrm{dt}}=\mathrm{5}\left(\mathrm{t}−\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{v}_{\mathrm{P}} } \mathrm{dv}_{\mathrm{P}} =\mathrm{5}\int_{\mathrm{1}} ^{\mathrm{t}} \left(\mathrm{t}−\mathrm{1}\right)\mathrm{dt} \\ $$$$\mathrm{v}_{\mathrm{P}} =\frac{\mathrm{5}}{\mathrm{2}}×\left[\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \right]_{\mathrm{1}} ^{\mathrm{t}} =\frac{\mathrm{5}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{ds}_{\mathrm{P}} }{\mathrm{dt}}=\frac{\mathrm{5}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{s}_{\mathrm{P}} } \mathrm{ds}_{\mathrm{P}} =\frac{\mathrm{5}}{\mathrm{2}}\int_{\mathrm{1}} ^{\:\mathrm{t}} \left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \mathrm{dt} \\ $$$$\mathrm{s}_{\mathrm{P}} =\frac{\mathrm{5}}{\mathrm{6}}\left[\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{3}} \right]_{\mathrm{1}} ^{\mathrm{t}} =\frac{\mathrm{5}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{6}} \\ $$$$ \\ $$$$\mathrm{at}\:\mathrm{t}=\mathrm{2} \\ $$$$\mathrm{v}_{\mathrm{P}} \left(\mathrm{2}\right)=\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{2}−\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{5}}{\mathrm{2}}\:\mathrm{m}/\mathrm{s} \\ $$$$\mathrm{s}_{\mathrm{P}} \left(\mathrm{2}\right)=\frac{\mathrm{5}}{\mathrm{6}}\left(\mathrm{2}−\mathrm{1}\right)^{\mathrm{3}} =\frac{\mathrm{5}}{\mathrm{6}}\:\mathrm{m} \\ $$$$\mathrm{i}.\mathrm{e}.\:\mathrm{as}\:\mathrm{the}\:\mathrm{block}\:\mathrm{B}\:\mathrm{takes}\:\mathrm{off}\:\mathrm{from}\:\mathrm{ground} \\ $$$$\mathrm{the}\:\mathrm{pulley}\:\mathrm{has}\:\mathrm{a}\:\mathrm{displacement}\:\mathrm{of}\:\frac{\mathrm{5}}{\mathrm{6}}\:\mathrm{m}. \\ $$$$ \\ $$$$\mathrm{Phase}\:\left(\mathrm{3}\right):\:\mathrm{2}\leqslant\mathrm{t} \\ $$$$\mathrm{both}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{off}\:\mathrm{ground}. \\ $$$$\mathrm{a}_{\mathrm{P}} =\frac{\mathrm{10}\left(\mathrm{t}−\mathrm{1}\right)+\mathrm{5}\left(\mathrm{t}−\mathrm{1}\right)}{\mathrm{2}}=\frac{\mathrm{15}\left(\mathrm{t}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\frac{\mathrm{dv}_{\mathrm{P}} }{\mathrm{dt}}=\frac{\mathrm{15}}{\mathrm{2}}\left(\mathrm{t}−\mathrm{1}\right) \\ $$$$\int_{\frac{\mathrm{5}}{\mathrm{2}}} ^{\:\mathrm{v}_{\mathrm{P}} } \mathrm{dv}_{\mathrm{P}} =\frac{\mathrm{15}}{\mathrm{2}}\int_{\mathrm{2}} ^{\:\mathrm{t}} \left(\mathrm{t}−\mathrm{1}\right)\mathrm{dt} \\ $$$$\mathrm{v}_{\mathrm{p}} −\frac{\mathrm{5}}{\mathrm{2}}=\frac{\mathrm{15}}{\mathrm{4}}\left[\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right] \\ $$$$\Rightarrow\mathrm{v}_{\mathrm{P}} =\frac{\mathrm{5}}{\mathrm{4}}\left[\mathrm{3}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right] \\ $$$$\frac{\mathrm{ds}_{\mathrm{P}} }{\mathrm{dt}}=\frac{\mathrm{5}}{\mathrm{4}}\left[\mathrm{3}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right] \\ $$$$\int_{\frac{\mathrm{6}}{\mathrm{5}}} ^{\mathrm{s}_{\mathrm{P}} } \mathrm{ds}_{\mathrm{P}} =\frac{\mathrm{5}}{\mathrm{4}}\int_{\mathrm{2}} ^{\:\mathrm{t}} \left[\mathrm{3}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right]\mathrm{dt} \\ $$$$\mathrm{s}_{\mathrm{P}} −\frac{\mathrm{5}}{\mathrm{6}}=\frac{\mathrm{5}}{\mathrm{4}}\left[\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}\right]−\frac{\mathrm{5}}{\mathrm{4}}\left(\mathrm{t}−\mathrm{2}\right) \\ $$$$\mathrm{s}_{\mathrm{P}} =\frac{\mathrm{5}}{\mathrm{4}}\mathrm{t}\left(\mathrm{t}−\mathrm{1}\right)\left(\mathrm{t}−\mathrm{2}\right)+\frac{\mathrm{5}}{\mathrm{6}} \\ $$

Commented by mrW1 last updated on 05/Nov/17

Commented by Tinkutara last updated on 09/Nov/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Answered by ajfour last updated on 04/Nov/17

let acc. of pulley be A,  acc. of 1kg block is then  2A  tension in string =(1/2)(20t) =10t  motion starts when T=10t≥ mg  that is at t=1s  when 2kg block gets lifted, 10t=Mg  ⇒  t=2s  displacement of pulley =∫_1 ^(  2) vdt  v(t)=∫_1 ^(  t) Adt       applying F=ma on 1kg block,    T−mg=ma  or    10t−g=2A  ⇒    A=((10t−g)/2)  velocity of pulley  v(t)=∫_1 ^(  t) (((10t−g)/2))dt  v=(((10t−g)^2 )/(40))   ,  So     displacement  s =∫_1 ^(  2)  (((10t−g)^2 )/(40))dt       s = (((10t−g)^3 )/(1200)) ∣_1 ^( 2)     if  g=10m/s^2   then  s=(5/6) m .

$${let}\:{acc}.\:{of}\:{pulley}\:{be}\:{A}, \\ $$$${acc}.\:{of}\:\mathrm{1}{kg}\:{block}\:{is}\:{then}\:\:\mathrm{2}{A} \\ $$$${tension}\:{in}\:{string}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{20}{t}\right)\:=\mathrm{10}{t} \\ $$$${motion}\:{starts}\:{when}\:{T}=\mathrm{10}{t}\geqslant\:{mg} \\ $$$${that}\:{is}\:{at}\:{t}=\mathrm{1}{s} \\ $$$${when}\:\mathrm{2}{kg}\:{block}\:{gets}\:{lifted},\:\mathrm{10}{t}={Mg} \\ $$$$\Rightarrow\:\:{t}=\mathrm{2}{s} \\ $$$${displacement}\:{of}\:{pulley}\:=\int_{\mathrm{1}} ^{\:\:\mathrm{2}} {vdt} \\ $$$${v}\left({t}\right)=\int_{\mathrm{1}} ^{\:\:{t}} {Adt} \\ $$$$\:\:\:\:\:{applying}\:{F}={ma}\:{on}\:\mathrm{1}{kg}\:{block}, \\ $$$$\:\:{T}−{mg}={ma} \\ $$$${or}\:\:\:\:\mathrm{10}{t}−{g}=\mathrm{2}{A}\:\:\Rightarrow\:\:\:\:{A}=\frac{\mathrm{10}{t}−{g}}{\mathrm{2}} \\ $$$${velocity}\:{of}\:{pulley}\:\:{v}\left({t}\right)=\int_{\mathrm{1}} ^{\:\:{t}} \left(\frac{\mathrm{10}{t}−{g}}{\mathrm{2}}\right){dt} \\ $$$${v}=\frac{\left(\mathrm{10}{t}−{g}\right)^{\mathrm{2}} }{\mathrm{40}}\:\:\:,\:\:{So}\:\:\: \\ $$$${displacement}\:\:\boldsymbol{{s}}\:=\int_{\mathrm{1}} ^{\:\:\mathrm{2}} \:\frac{\left(\mathrm{10}{t}−{g}\right)^{\mathrm{2}} }{\mathrm{40}}{dt} \\ $$$$\:\:\:\:\:\boldsymbol{{s}}\:=\:\frac{\left(\mathrm{10}\boldsymbol{{t}}−\boldsymbol{{g}}\right)^{\mathrm{3}} }{\mathrm{1200}}\:\mid_{\mathrm{1}} ^{\:\mathrm{2}} \:\: \\ $$$${if}\:\:{g}=\mathrm{10}{m}/{s}^{\mathrm{2}} \:\:{then}\:\:\boldsymbol{{s}}=\frac{\mathrm{5}}{\mathrm{6}}\:{m}\:. \\ $$

Commented by Tinkutara last updated on 04/Nov/17

Why displacement is not ∫_0 ^2 vdt? And  why we take v(t) of block A only?

$${Why}\:{displacement}\:{is}\:{not}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{vdt}?\:{And} \\ $$$${why}\:{we}\:{take}\:{v}\left({t}\right)\:{of}\:{block}\:{A}\:{only}? \\ $$

Commented by ajfour last updated on 04/Nov/17

until Tensin T=(1/2)(20t) <mg   pulley doen′t move, (till t=1s).  v(t) =∫_1 ^(  t) Adt is velocity of pulley  at any time t. velocity of block is  =2v =∫_1 ^(  t) 2Adt .  to find displacement of pulley  we need to integrate v(t) of  pulley from t=1s to t=2s .

$${until}\:{Tensin}\:{T}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{20}{t}\right)\:<{mg}\: \\ $$$${pulley}\:{doen}'{t}\:{move},\:\left({till}\:{t}=\mathrm{1}{s}\right). \\ $$$${v}\left({t}\right)\:=\int_{\mathrm{1}} ^{\:\:{t}} {Adt}\:{is}\:{velocity}\:{of}\:{pulley} \\ $$$${at}\:{any}\:{time}\:{t}.\:{velocity}\:{of}\:{block}\:{is} \\ $$$$=\mathrm{2}{v}\:=\int_{\mathrm{1}} ^{\:\:{t}} \mathrm{2}{Adt}\:. \\ $$$${to}\:{find}\:{displacement}\:{of}\:{pulley} \\ $$$${we}\:{need}\:{to}\:{integrate}\:{v}\left({t}\right)\:{of} \\ $$$${pulley}\:{from}\:{t}=\mathrm{1}{s}\:{to}\:{t}=\mathrm{2}{s}\:. \\ $$

Commented by mrW1 last updated on 09/Nov/17

At the moment the force begins to  apply its value is zero. It needs 1   second time to reach the value 20 N  and the block A begins to move. That  means in the first second in which  the force applies there is no movement  of the pulley: v=0 for t=0 to 1.  s(t)=∫_0 ^( t) vdt=∫_0 ^1 vdt+∫_1 ^t vdt=0+∫_1 ^t vdt=∫_1 ^t vdt

$${At}\:{the}\:{moment}\:{the}\:{force}\:{begins}\:{to} \\ $$$${apply}\:{its}\:{value}\:{is}\:{zero}.\:{It}\:{needs}\:\mathrm{1}\: \\ $$$${second}\:{time}\:{to}\:{reach}\:{the}\:{value}\:\mathrm{20}\:{N} \\ $$$${and}\:{the}\:{block}\:{A}\:{begins}\:{to}\:{move}.\:{That} \\ $$$${means}\:{in}\:{the}\:{first}\:{second}\:{in}\:{which} \\ $$$${the}\:{force}\:{applies}\:{there}\:{is}\:{no}\:{movement} \\ $$$${of}\:{the}\:{pulley}:\:{v}=\mathrm{0}\:{for}\:{t}=\mathrm{0}\:{to}\:\mathrm{1}. \\ $$$${s}\left({t}\right)=\int_{\mathrm{0}} ^{\:{t}} {vdt}=\int_{\mathrm{0}} ^{\mathrm{1}} {vdt}+\int_{\mathrm{1}} ^{{t}} {vdt}=\mathrm{0}+\int_{\mathrm{1}} ^{{t}} {vdt}=\int_{\mathrm{1}} ^{{t}} {vdt} \\ $$

Commented by Tinkutara last updated on 09/Nov/17

Thank you very much Sir!  The pulley moves only when either of  the two blocks lifts up? Why not from  the moment when force is applied on it?

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$$$\mathrm{The}\:\mathrm{pulley}\:\mathrm{moves}\:\mathrm{only}\:\mathrm{when}\:\mathrm{either}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{blocks}\:\mathrm{lifts}\:\mathrm{up}?\:\mathrm{Why}\:\mathrm{not}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{moment}\:\mathrm{when}\:\mathrm{force}\:\mathrm{is}\:\mathrm{applied}\:\mathrm{on}\:\mathrm{it}? \\ $$

Commented by Tinkutara last updated on 09/Nov/17

Before 1 second, say 0.5 second, force  applied is 10 N on the pulley and it is  continuously increasing. So why  pulley does not move with this force?

$${Before}\:\mathrm{1}\:{second},\:{say}\:\mathrm{0}.\mathrm{5}\:{second},\:{force} \\ $$$${applied}\:{is}\:\mathrm{10}\:{N}\:{on}\:{the}\:{pulley}\:{and}\:{it}\:{is} \\ $$$${continuously}\:{increasing}.\:{So}\:{why} \\ $$$${pulley}\:{does}\:{not}\:{move}\:{with}\:{this}\:{force}? \\ $$

Commented by mrW1 last updated on 09/Nov/17

In the first second the force F doen′t  make movement but only reduce the  the contact force N between the block A  and the floor:  N=m_A g−F  The block A will be lifted when N=0.

$${In}\:{the}\:{first}\:{second}\:{the}\:{force}\:{F}\:{doen}'{t} \\ $$$${make}\:{movement}\:{but}\:{only}\:{reduce}\:{the} \\ $$$${the}\:{contact}\:{force}\:{N}\:{between}\:{the}\:{block}\:{A} \\ $$$${and}\:{the}\:{floor}: \\ $$$${N}={m}_{{A}} {g}−{F} \\ $$$${The}\:{block}\:{A}\:{will}\:{be}\:{lifted}\:{when}\:{N}=\mathrm{0}. \\ $$

Commented by Tinkutara last updated on 09/Nov/17

OK. But when block 1 is lifted at 1 s  block 2 is not lifted. So why the pulley  still moves without lifting of block 2?

$$\mathrm{OK}.\:\mathrm{But}\:\mathrm{when}\:\mathrm{block}\:\mathrm{1}\:\mathrm{is}\:\mathrm{lifted}\:\mathrm{at}\:\mathrm{1}\:\mathrm{s} \\ $$$$\mathrm{block}\:\mathrm{2}\:\mathrm{is}\:\mathrm{not}\:\mathrm{lifted}.\:\mathrm{So}\:\mathrm{why}\:\mathrm{the}\:\mathrm{pulley} \\ $$$$\mathrm{still}\:\mathrm{moves}\:\mathrm{without}\:\mathrm{lifting}\:\mathrm{of}\:\mathrm{block}\:\mathrm{2}? \\ $$

Commented by mrW1 last updated on 09/Nov/17

Since F must be 40 N to lift the block  B. So in the time t=1 to 2 only block  A moves. When block A moves, the  pulley moves also.

$${Since}\:{F}\:{must}\:{be}\:\mathrm{40}\:{N}\:{to}\:{lift}\:{the}\:{block} \\ $$$${B}.\:{So}\:{in}\:{the}\:{time}\:{t}=\mathrm{1}\:{to}\:\mathrm{2}\:{only}\:{block} \\ $$$${A}\:{moves}.\:{When}\:{block}\:{A}\:{moves},\:{the} \\ $$$${pulley}\:{moves}\:{also}. \\ $$

Commented by Tinkutara last updated on 09/Nov/17

Thank you very much Sir!  All doubts cleared.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$$$\mathrm{All}\:\mathrm{doubts}\:\mathrm{cleared}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com