Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 23748 by mrW1 last updated on 05/Nov/17

Commented by mrW1 last updated on 05/Nov/17

The same question as Q23707,  but the pulley C has a mass 1 kg and  radius 5 cm.

$$\mathrm{The}\:\mathrm{same}\:\mathrm{question}\:\mathrm{as}\:\mathrm{Q23707}, \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{pulley}\:\mathrm{C}\:\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{1}\:\mathrm{kg}\:\mathrm{and} \\ $$$$\mathrm{radius}\:\mathrm{5}\:\mathrm{cm}. \\ $$

Answered by ajfour last updated on 05/Nov/17

Tension on left(A side)=T_1   T_1 −mg=2mA                 ...(i)  F−T_1 −T_2 −mg=mA                   ....(ii)  (T_2 −T_1 )r =(((mr^2 )/2))((A/r))    ...(iii)  ⇒  T_2 =T_1 +((mA)/2)  using in (ii):  F−2T_1 =((3mA)/2)+mg                .....(iv)  Block A is lifted when T_1 =mg  so,     F=3mg       (A =0 till then)  ⇒     20t=30    or   t=(3/2)s  From (iv) and (i):  F−2(mg+2mA)=((3mA)/2)+mg  or   20t−30=((11A)/2)  A=((40)/(11))(t−(3/2))  this is valid till T_2  ≤2mg  Eliminating T_1  from (i) and(iii)  T_1 −mg=2mA ;  T_2 =T_1 +((mA)/2)+mg  T_2 =mg+2mA+((mA)/2)  when block B is lifted,  T_2 =2mg ⇒   ((5mA)/2)=mg  A=((2g)/5)   or   ((40)/(11))(t−(3/2))=((2g)/5)                    t=((11)/(10))+(3/2) =2.6s  s_p  = ∫_(3/2) ^(  2.6) v_p dt  v_p = ∫_(3/2) ^(  t) Adt = ((40)/(11))∫_(3/2) ^(  t) (t−(3/2))dt       =((20)/(11))(t−(3/2))^2         s_p =((20)/(11))∫_(3/2) ^(  2.6) (t−(3/2))^2 dt      =((20)/(11))×(1/3)×(((11)/(10)))^3 =((121)/(150)) m ≈ 0.8m    (s_p  by the time block B is lifted).    still the same answer..!

$${Tension}\:{on}\:{left}\left({A}\:{side}\right)={T}_{\mathrm{1}} \\ $$$${T}_{\mathrm{1}} −{mg}=\mathrm{2}{mA}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left({i}\right) \\ $$$${F}−{T}_{\mathrm{1}} −{T}_{\mathrm{2}} −{mg}={mA}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$$\left({T}_{\mathrm{2}} −{T}_{\mathrm{1}} \right){r}\:=\left(\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\frac{{A}}{{r}}\right)\:\:\:\:...\left({iii}\right) \\ $$$$\Rightarrow\:\:{T}_{\mathrm{2}} ={T}_{\mathrm{1}} +\frac{{mA}}{\mathrm{2}} \\ $$$${using}\:{in}\:\left({ii}\right): \\ $$$${F}−\mathrm{2}{T}_{\mathrm{1}} =\frac{\mathrm{3}{mA}}{\mathrm{2}}+{mg}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({iv}\right) \\ $$$${Block}\:{A}\:{is}\:{lifted}\:{when}\:{T}_{\mathrm{1}} ={mg} \\ $$$${so},\:\:\:\:\:{F}=\mathrm{3}{mg}\:\:\:\:\:\:\:\left({A}\:=\mathrm{0}\:{till}\:{then}\right) \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{20}{t}=\mathrm{30}\:\:\:\:{or}\:\:\:\boldsymbol{{t}}=\frac{\mathrm{3}}{\mathrm{2}}{s} \\ $$$${From}\:\left({iv}\right)\:{and}\:\left({i}\right): \\ $$$${F}−\mathrm{2}\left({mg}+\mathrm{2}{mA}\right)=\frac{\mathrm{3}{mA}}{\mathrm{2}}+{mg} \\ $$$${or}\:\:\:\mathrm{20}{t}−\mathrm{30}=\frac{\mathrm{11}{A}}{\mathrm{2}} \\ $$$${A}=\frac{\mathrm{40}}{\mathrm{11}}\left({t}−\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$${this}\:{is}\:{valid}\:{till}\:{T}_{\mathrm{2}} \:\leqslant\mathrm{2}{mg} \\ $$$${Eliminating}\:{T}_{\mathrm{1}} \:{from}\:\left({i}\right)\:{and}\left({iii}\right) \\ $$$${T}_{\mathrm{1}} −{mg}=\mathrm{2}{mA}\:;\:\:{T}_{\mathrm{2}} ={T}_{\mathrm{1}} +\frac{{mA}}{\mathrm{2}}+{mg} \\ $$$${T}_{\mathrm{2}} ={mg}+\mathrm{2}{mA}+\frac{{mA}}{\mathrm{2}} \\ $$$${when}\:{block}\:{B}\:{is}\:{lifted}, \\ $$$${T}_{\mathrm{2}} =\mathrm{2}{mg}\:\Rightarrow\:\:\:\frac{\mathrm{5}{mA}}{\mathrm{2}}={mg} \\ $$$${A}=\frac{\mathrm{2}{g}}{\mathrm{5}}\:\:\:{or}\:\:\:\frac{\mathrm{40}}{\mathrm{11}}\left({t}−\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{2}{g}}{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}=\frac{\mathrm{11}}{\mathrm{10}}+\frac{\mathrm{3}}{\mathrm{2}}\:=\mathrm{2}.\mathrm{6}{s} \\ $$$${s}_{{p}} \:=\:\int_{\mathrm{3}/\mathrm{2}} ^{\:\:\mathrm{2}.\mathrm{6}} {v}_{{p}} {dt} \\ $$$${v}_{{p}} =\:\int_{\mathrm{3}/\mathrm{2}} ^{\:\:{t}} {Adt}\:=\:\frac{\mathrm{40}}{\mathrm{11}}\int_{\mathrm{3}/\mathrm{2}} ^{\:\:{t}} \left({t}−\frac{\mathrm{3}}{\mathrm{2}}\right){dt} \\ $$$$\:\:\:\:\:=\frac{\mathrm{20}}{\mathrm{11}}\left({t}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:{s}_{{p}} =\frac{\mathrm{20}}{\mathrm{11}}\int_{\mathrm{3}/\mathrm{2}} ^{\:\:\mathrm{2}.\mathrm{6}} \left({t}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} {dt} \\ $$$$\:\:\:\:=\frac{\mathrm{20}}{\mathrm{11}}×\frac{\mathrm{1}}{\mathrm{3}}×\left(\frac{\mathrm{11}}{\mathrm{10}}\right)^{\mathrm{3}} =\frac{\mathrm{121}}{\mathrm{150}}\:{m}\:\approx\:\mathrm{0}.\mathrm{8}{m} \\ $$$$\:\:\left({s}_{{p}} \:{by}\:{the}\:{time}\:{block}\:{B}\:{is}\:{lifted}\right). \\ $$$$\:\:{still}\:{the}\:{same}\:{answer}..! \\ $$

Commented by mrW1 last updated on 05/Nov/17

I checked again. The answer ((121)/(150)) is  correct.  Can you also find the displacement of  pulley at t=5 sec?

$${I}\:{checked}\:{again}.\:{The}\:{answer}\:\frac{\mathrm{121}}{\mathrm{150}}\:{is} \\ $$$${correct}. \\ $$$${Can}\:{you}\:{also}\:{find}\:{the}\:{displacement}\:{of} \\ $$$${pulley}\:{at}\:{t}=\mathrm{5}\:{sec}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com