Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23937 by ajfour last updated on 10/Nov/17

Commented by ajfour last updated on 10/Nov/17

A thin rod placed perpendicular  on a rough horizontal surface  and released at rest. Find angle  𝛂 at which its bottom end starts  slipping. The coefficient of  friction for surface and rod is 𝛍.

$${A}\:{thin}\:{rod}\:{placed}\:{perpendicular} \\ $$$${on}\:{a}\:{rough}\:{horizontal}\:{surface} \\ $$$${and}\:{released}\:{at}\:{rest}.\:{Find}\:{angle} \\ $$$$\boldsymbol{\alpha}\:{at}\:{which}\:{its}\:{bottom}\:{end}\:{starts} \\ $$$${slipping}.\:{The}\:{coefficient}\:{of} \\ $$$${friction}\:{for}\:{surface}\:{and}\:{rod}\:{is}\:\boldsymbol{\mu}. \\ $$

Answered by Physics lover last updated on 10/Nov/17

assuming that the rod has turned by  an angle θ and further θ + dθ  α = ((mg Sin θ (l/2))/((ml^2 )/3)) ⇒ α = ((3g Sin θ)/(2l))  ...i  ⇒ ω^(2 ) = ((3g (1−Cos θ))/l)     .... ii  mg − N = (mω^2 (l/2) Cos θ ) + ((3mgSin^2  θ)/4)  ⇒ N = {mg − mω^(2 ) (l/2) Cos θ  − ((3mg Sin^2  θ )/4) }     ⇒ N = mg{ 1− (((3(1−Cos θ))/2))Cos θ −((3Sin^2  θ)/4)}  ⇒ N = ((mg)/4) [4 − 6 Cos θ + 6 Cos^(2 ) θ −3 + 3 Cos^(2 ) θ ]  ⇒ N = ((mg)/4)[ 1− 3 Cos θ ]^2   we can have two cases  1. when mg Cos θ > mω^2 (l/2)  2.  mω^(2 ) (l/2) > mg Cos θ  in first case μN Sin θ will be in  opposite direction of mg Cos θ.    ⇒mg Cos θ ± μ N Sine θ = mω^2  (l/2)  ⇒mg Cos θ ± μ ((mg(1 − 3 Cos θ)^2 )/4)Sin θ = ((3mg(1− Cos θ))/2)  ⇒4 Cos θ ± μ∙Sin θ ∙ (1− 3 Cos  θ)^2 =6− 6 Cos θ  ⇒10 Cos θ ± μ Sin θ(1− 3 Cos θ)^2  = 6  α = θ : it satisfies the above equation

$${assuming}\:{that}\:{the}\:{rod}\:{has}\:{turned}\:{by} \\ $$$${an}\:{angle}\:\theta\:{and}\:{further}\:\theta\:+\:{d}\theta \\ $$$$\alpha\:=\:\frac{{mg}\:{Sin}\:\theta\:\frac{{l}}{\mathrm{2}}}{\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}}\:\Rightarrow\:\alpha\:=\:\frac{\mathrm{3}{g}\:{Sin}\:\theta}{\mathrm{2}{l}}\:\:...{i} \\ $$$$\Rightarrow\:\omega\:^{\mathrm{2}\:} =\:\frac{\mathrm{3}{g}\:\left(\mathrm{1}−{Cos}\:\theta\right)}{{l}}\:\:\:\:\:....\:{ii} \\ $$$${mg}\:−\:{N}\:=\:\left({m}\omega^{\mathrm{2}} \frac{{l}}{\mathrm{2}}\:{Cos}\:\theta\:\right)\:+\:\frac{\mathrm{3}{mgSin}^{\mathrm{2}} \:\theta}{\mathrm{4}} \\ $$$$\Rightarrow\:{N}\:=\:\left\{{mg}\:−\:{m}\omega^{\mathrm{2}\:} \frac{{l}}{\mathrm{2}}\:{Cos}\:\theta\:\:−\:\frac{\mathrm{3}{mg}\:{Sin}^{\mathrm{2}} \:\theta\:}{\mathrm{4}}\:\right\}\:\:\: \\ $$$$\Rightarrow\:{N}\:=\:{mg}\left\{\:\mathrm{1}−\:\left(\frac{\mathrm{3}\left(\mathrm{1}−{Cos}\:\theta\right)}{\mathrm{2}}\right){Cos}\:\theta\:−\frac{\mathrm{3}{Sin}^{\mathrm{2}} \:\theta}{\mathrm{4}}\right\} \\ $$$$\Rightarrow\:{N}\:=\:\frac{{mg}}{\mathrm{4}}\:\left[\mathrm{4}\:−\:\mathrm{6}\:{Cos}\:\theta\:+\:\mathrm{6}\:{Cos}\:^{\mathrm{2}\:} \theta\:−\mathrm{3}\:+\:\mathrm{3}\:{Cos}\:^{\mathrm{2}\:} \theta\:\right] \\ $$$$\Rightarrow\:{N}\:=\:\frac{{mg}}{\mathrm{4}}\left[\:\mathrm{1}−\:\mathrm{3}\:{Cos}\:\theta\:\right]^{\mathrm{2}} \\ $$$${we}\:{can}\:{have}\:{two}\:{cases} \\ $$$$\mathrm{1}.\:{when}\:{mg}\:{Cos}\:\theta\:>\:{m}\omega^{\mathrm{2}} \frac{{l}}{\mathrm{2}} \\ $$$$\mathrm{2}.\:\:{m}\omega^{\mathrm{2}\:} \frac{{l}}{\mathrm{2}}\:>\:{mg}\:{Cos}\:\theta \\ $$$${in}\:{first}\:{case}\:\mu{N}\:{Sin}\:\theta\:{will}\:{be}\:{in} \\ $$$${opposite}\:{direction}\:{of}\:{mg}\:{Cos}\:\theta. \\ $$$$ \\ $$$$\Rightarrow{mg}\:{Cos}\:\theta\:\pm\:\mu\:{N}\:{Sine}\:\theta\:=\:{m}\omega^{\mathrm{2}} \:\frac{{l}}{\mathrm{2}} \\ $$$$\Rightarrow{mg}\:{Cos}\:\theta\:\pm\:\mu\:\frac{{mg}\left(\mathrm{1}\:−\:\mathrm{3}\:{Cos}\:\theta\right)^{\mathrm{2}} }{\mathrm{4}}{Sin}\:\theta\:=\:\frac{\mathrm{3}{mg}\left(\mathrm{1}−\:{Cos}\:\theta\right)}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}\:{Cos}\:\theta\:\pm\:\mu\centerdot{Sin}\:\theta\:\centerdot\:\left(\mathrm{1}−\:\mathrm{3}\:{Cos}\:\:\theta\right)^{\mathrm{2}} =\mathrm{6}−\:\mathrm{6}\:{Cos}\:\theta \\ $$$$\Rightarrow\mathrm{10}\:{Cos}\:\theta\:\pm\:\mu\:{Sin}\:\theta\left(\mathrm{1}−\:\mathrm{3}\:{Cos}\:\theta\right)^{\mathrm{2}} \:=\:\mathrm{6} \\ $$$$\alpha\:=\:\theta\::\:{it}\:{satisfies}\:{the}\:{above}\:{equation} \\ $$$$ \\ $$

Commented by ajfour last updated on 10/Nov/17

mg−N = mω^2 (l/2)cos θ+((mαl)/2)sin θ  ⇒ mg−N=((3mgcos θ(1−cos θ))/2)                                + ((3mg)/4)sin^2 θ  ⇒ N=mg[1−(3/2)cos θ(1−cos θ)                              −(3/4)sin^2 θ ]  N = ((mg)/4)[4−6cos θ+6cos^2 θ−3sin^2 θ]    =((mg)/4)(1−6cos θ+9cos^2 θ)    N=((mg)/4)(3cos 𝛉−1)^2   ⇒ N is  zero for θ=cos^(−1) ((1/3)) .  If f ≥ 𝛍N  for θ < cos^(−1) ((1/3)) then  slipping occurs at a lesser angle.  f =m(((𝛂l)/2)cos 𝛉−((𝛚^2 l)/2)sin 𝛉)    =((3mg)/4)sin θcos θ−((3mg)/2)sin θ(1−cos θ)   =((3mg)/4)sin θ[cos θ−2+2cos θ]   =((3mg)/4)sin θ(3cos θ−2)  f > 𝛍N   ⇒  ((3mg)/4)sin θ(3cos θ−2) > ((μmg)/4)(3cos θ−1)^2   or  𝛍 < ((3sin θ(3cos θ−2))/((3cos θ−1)^2 ))   So if slipping doesn′t take place  till θ ≤ cos^(−1) ((1/3)) , contact itself  breaks at θ=cos^(−1) ((1/3)) ;  and for slipping  to occur at a lesser angle,  𝛉  should be such that     ((sin θ(cos θ−(2/3)))/((cos θ−(1/3))^2 )) > μ .

$${mg}−{N}\:=\:{m}\omega^{\mathrm{2}} \frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta+\frac{{m}\alpha{l}}{\mathrm{2}}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:{mg}−{N}=\frac{\mathrm{3}{mg}\mathrm{cos}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\frac{\mathrm{3}{mg}}{\mathrm{4}}\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$$\Rightarrow\:{N}={mg}\left[\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{cos}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{sin}\:^{\mathrm{2}} \theta\:\right] \\ $$$$\boldsymbol{{N}}\:=\:\frac{{mg}}{\mathrm{4}}\left[\mathrm{4}−\mathrm{6cos}\:\theta+\mathrm{6cos}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:^{\mathrm{2}} \theta\right] \\ $$$$\:\:=\frac{{mg}}{\mathrm{4}}\left(\mathrm{1}−\mathrm{6cos}\:\theta+\mathrm{9cos}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\boldsymbol{{N}}=\frac{\boldsymbol{{mg}}}{\mathrm{4}}\left(\mathrm{3cos}\:\boldsymbol{\theta}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{N}\:{is}\:\:{zero}\:{for}\:\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:. \\ $$$${If}\:\boldsymbol{{f}}\:\geqslant\:\boldsymbol{\mu{N}}\:\:{for}\:\theta\:<\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:{then} \\ $$$${slipping}\:{occurs}\:{at}\:{a}\:{lesser}\:{angle}. \\ $$$$\boldsymbol{{f}}\:=\boldsymbol{{m}}\left(\frac{\boldsymbol{\alpha{l}}}{\mathrm{2}}\mathrm{cos}\:\boldsymbol{\theta}−\frac{\boldsymbol{\omega}^{\mathrm{2}} \boldsymbol{{l}}}{\mathrm{2}}\mathrm{sin}\:\boldsymbol{\theta}\right) \\ $$$$\:\:=\frac{\mathrm{3}{mg}}{\mathrm{4}}\mathrm{sin}\:\theta\mathrm{cos}\:\theta−\frac{\mathrm{3}{mg}}{\mathrm{2}}\mathrm{sin}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$\:=\frac{\mathrm{3}{mg}}{\mathrm{4}}\mathrm{sin}\:\theta\left[\mathrm{cos}\:\theta−\mathrm{2}+\mathrm{2cos}\:\theta\right] \\ $$$$\:=\frac{\mathrm{3}{mg}}{\mathrm{4}}\mathrm{sin}\:\theta\left(\mathrm{3cos}\:\theta−\mathrm{2}\right) \\ $$$$\boldsymbol{{f}}\:>\:\boldsymbol{\mu{N}}\:\:\:\Rightarrow \\ $$$$\frac{\mathrm{3}{mg}}{\mathrm{4}}\mathrm{sin}\:\theta\left(\mathrm{3cos}\:\theta−\mathrm{2}\right)\:>\:\frac{\mu{mg}}{\mathrm{4}}\left(\mathrm{3cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${or}\:\:\boldsymbol{\mu}\:<\:\frac{\mathrm{3sin}\:\theta\left(\mathrm{3cos}\:\theta−\mathrm{2}\right)}{\left(\mathrm{3cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:{So}\:{if}\:{slipping}\:{doesn}'{t}\:{take}\:{place} \\ $$$${till}\:\theta\:\leqslant\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:,\:{contact}\:{itself} \\ $$$${breaks}\:{at}\:\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:; \\ $$$${and}\:{for}\:{slipping} \\ $$$${to}\:{occur}\:{at}\:{a}\:{lesser}\:{angle},\:\:\boldsymbol{\theta} \\ $$$${should}\:{be}\:{such}\:{that} \\ $$$$\:\:\:\frac{\mathrm{sin}\:\theta\left(\mathrm{cos}\:\theta−\frac{\mathrm{2}}{\mathrm{3}}\right)}{\left(\mathrm{cos}\:\theta−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }\:>\:\mu\:. \\ $$

Commented by Physics lover last updated on 10/Nov/17

we need to consider both the cases  ,dont we? slipping may occur  due to mg Sin θ or mω^(2 ) l/2

$${we}\:{need}\:{to}\:{consider}\:{both}\:{the}\:{cases} \\ $$$$,{dont}\:{we}?\:{slipping}\:{may}\:{occur} \\ $$$${due}\:{to}\:{mg}\:{Sin}\:\theta\:{or}\:{m}\omega^{\mathrm{2}\:} {l}/\mathrm{2} \\ $$

Commented by Physics lover last updated on 10/Nov/17

Is my answer correct?

$${Is}\:{my}\:{answer}\:{correct}? \\ $$

Commented by ajfour last updated on 10/Nov/17

you missed a sin θ in the last term  of expression of N (it will have  sin^2 θ )..

$${you}\:{missed}\:{a}\:\mathrm{sin}\:\theta\:{in}\:{the}\:{last}\:{term} \\ $$$${of}\:{expression}\:{of}\:{N}\:\left({it}\:{will}\:{have}\right. \\ $$$$\left.\mathrm{sin}\:^{\mathrm{2}} \theta\:\right).. \\ $$

Commented by Physics lover last updated on 10/Nov/17

yes sir its Sin^2 θ

$${yes}\:{sir}\:{its}\:{Sin}^{\mathrm{2}} \theta \\ $$

Commented by Physics lover last updated on 10/Nov/17

Check it now ,plz.

$${Check}\:{it}\:{now}\:,{plz}. \\ $$

Commented by Physics lover last updated on 10/Nov/17

N= ((mg)/4)(1−6 Cos θ + 9 Cos^2 θ)

$${N}=\:\frac{{mg}}{\mathrm{4}}\left(\mathrm{1}−\mathrm{6}\:{Cos}\:\theta\:+\:\mathrm{9}\:{Cos}^{\mathrm{2}} \theta\right) \\ $$

Commented by mrW1 last updated on 10/Nov/17

I got:  μ=0.4: never slipping  μ=0.3: slipping at α=24.2°  μ=0.2: slipping at α=15.5°  μ=0.1: slipping at α=7.6°

$${I}\:{got}: \\ $$$$\mu=\mathrm{0}.\mathrm{4}:\:{never}\:{slipping} \\ $$$$\mu=\mathrm{0}.\mathrm{3}:\:{slipping}\:{at}\:\alpha=\mathrm{24}.\mathrm{2}° \\ $$$$\mu=\mathrm{0}.\mathrm{2}:\:{slipping}\:{at}\:\alpha=\mathrm{15}.\mathrm{5}° \\ $$$$\mu=\mathrm{0}.\mathrm{1}:\:{slipping}\:{at}\:\alpha=\mathrm{7}.\mathrm{6}° \\ $$

Commented by Physics lover last updated on 10/Nov/17

and the +ve and −ve signs also  make sense

$${and}\:{the}\:+{ve}\:{and}\:−{ve}\:{signs}\:{also} \\ $$$${make}\:{sense} \\ $$

Commented by ajfour last updated on 10/Nov/17

yes MrW1 sir, my  corrected results  predict the same pecific values.  Thank you so much, Sir.  Thank you Physics lover   for your cooperation.

$${yes}\:{MrW}\mathrm{1}\:{sir},\:{my}\:\:{corrected}\:{results} \\ $$$${predict}\:{the}\:{same}\:{pecific}\:{values}. \\ $$$${Thank}\:{you}\:{so}\:{much},\:{Sir}. \\ $$$${Thank}\:{you}\:{Physics}\:{lover}\: \\ $$$${for}\:{your}\:{cooperation}. \\ $$

Commented by Physics lover last updated on 10/Nov/17

you are correct Mr ajfour.  we cannot take the case θ>cos^(−1) (1/3)  Excellent job!!!!

$${you}\:{are}\:{correct}\:{Mr}\:{ajfour}. \\ $$$${we}\:{cannot}\:{take}\:{the}\:{case}\:\theta>{cos}^{−\mathrm{1}} \left(\mathrm{1}/\mathrm{3}\right) \\ $$$${Excellent}\:{job}!!!! \\ $$

Commented by Physics lover last updated on 10/Nov/17

but it will always slip whatever  μ may be.

$${but}\:{it}\:{will}\:{always}\:{slip}\:{whatever} \\ $$$$\mu\:{may}\:{be}. \\ $$

Commented by mrW1 last updated on 10/Nov/17

you are right sir. slipping occurs for  any value of μ.    for 0≤μ≤0.37:  slipping at 0°≤α≤35.1°    for μ>0.37:  slipping at 50.2°≤α≤70.5°

$${you}\:{are}\:{right}\:{sir}.\:{slipping}\:{occurs}\:{for} \\ $$$${any}\:{value}\:{of}\:\mu. \\ $$$$ \\ $$$${for}\:\mathrm{0}\leqslant\mu\leqslant\mathrm{0}.\mathrm{37}: \\ $$$${slipping}\:{at}\:\mathrm{0}°\leqslant\alpha\leqslant\mathrm{35}.\mathrm{1}° \\ $$$$ \\ $$$${for}\:\mu>\mathrm{0}.\mathrm{37}: \\ $$$${slipping}\:{at}\:\mathrm{50}.\mathrm{2}°\leqslant\alpha\leqslant\mathrm{70}.\mathrm{5}° \\ $$

Commented by mrW1 last updated on 10/Nov/17

Commented by Physics lover last updated on 10/Nov/17

Commented by Physics lover last updated on 10/Nov/17

there is some problem.At θ = 0.8411  ⇒μ=0⇒ it will slip at that point.  which is not true.  ⇒ the μ which we are calculaing  is for a given θ.  i mean ,if we want to start  slipping at 0.841⇒ μ = 0.1873  B′cuz 0.5367 will have to be  covered before 0.841.  And it  is 2 for π/2 .but  according to the following calculationd   it should be 6.

$${there}\:{is}\:{some}\:{problem}.{At}\:\theta\:=\:\mathrm{0}.\mathrm{8411} \\ $$$$\Rightarrow\mu=\mathrm{0}\Rightarrow\:{it}\:{will}\:{slip}\:{at}\:{that}\:{point}. \\ $$$${which}\:{is}\:{not}\:{true}. \\ $$$$\Rightarrow\:{the}\:\mu\:{which}\:{we}\:{are}\:{calculaing} \\ $$$${is}\:{for}\:{a}\:{given}\:\theta. \\ $$$${i}\:{mean}\:,{if}\:{we}\:{want}\:{to}\:{start} \\ $$$${slipping}\:{at}\:\mathrm{0}.\mathrm{841}\Rightarrow\:\mu\:=\:\mathrm{0}.\mathrm{1873} \\ $$$${B}'{cuz}\:\mathrm{0}.\mathrm{5367}\:{will}\:{have}\:{to}\:{be} \\ $$$${covered}\:{before}\:\mathrm{0}.\mathrm{841}. \\ $$$${And}\:{it} \\ $$$${is}\:\mathrm{2}\:{for}\:\pi/\mathrm{2}\:.{but} \\ $$$${according}\:{to}\:{the}\:{following}\:{calculationd}\: \\ $$$${it}\:{should}\:{be}\:\mathrm{6}. \\ $$

Commented by Physics lover last updated on 10/Nov/17

assumg that the rod is hinged  and covers π/2 and horizontal  hinge reaction as μN⇒ μ = 6.

$${assumg}\:{that}\:{the}\:{rod}\:{is}\:{hinged} \\ $$$${and}\:{covers}\:\pi/\mathrm{2}\:{and}\:{horizontal} \\ $$$${hinge}\:{reaction}\:{as}\:\mu{N}\Rightarrow\:\mu\:=\:\mathrm{6}. \\ $$$$ \\ $$

Commented by mrW1 last updated on 11/Nov/17

I think your graph is not correct.  The function should be:  (f/N)=y=((sin x (cos x −(2/3)))/((cos x − (1/3))^2 ))

$${I}\:{think}\:{your}\:{graph}\:{is}\:{not}\:{correct}. \\ $$$${The}\:{function}\:{should}\:{be}: \\ $$$$\frac{{f}}{{N}}={y}=\frac{\mathrm{sin}\:{x}\:\left(\mathrm{cos}\:{x}\:−\frac{\mathrm{2}}{\mathrm{3}}\right)}{\left(\mathrm{cos}\:{x}\:−\:\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$

Commented by mrW1 last updated on 10/Nov/17

Commented by mrW1 last updated on 11/Nov/17

at x=0.8411 (=48.2°), f=0, this  is possible. And it doesn′t mean  that μ=0 and it doesn′t mean that  the rod slips.

$${at}\:{x}=\mathrm{0}.\mathrm{8411}\:\left(=\mathrm{48}.\mathrm{2}°\right),\:{f}=\mathrm{0},\:{this} \\ $$$${is}\:{possible}.\:{And}\:{it}\:{doesn}'{t}\:{mean} \\ $$$${that}\:\mu=\mathrm{0}\:{and}\:{it}\:{doesn}'{t}\:{mean}\:{that} \\ $$$${the}\:{rod}\:{slips}. \\ $$

Commented by mrW1 last updated on 11/Nov/17

Commented by mrW1 last updated on 11/Nov/17

My opinion is that slipping always  occur at an angle less than cos^(−1) (1/3)  (≈70.5°).    If μ≤0.3706, the angle α at which  the rod begins to slip fulfills  ((sin α (cos α−(2/3)))/((cos α−(1/3))^2 ))=μ  and 0≤α≤35.1°    If μ>0.3706, the angle α at which  the rod begins to slip fulfills  ((sin α (cos α−(2/3)))/((cos α−(1/3))^2 ))=−μ  and 50.2°<α<70.5°

$${My}\:{opinion}\:{is}\:{that}\:{slipping}\:{always} \\ $$$${occur}\:{at}\:{an}\:{angle}\:{less}\:{than}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\left(\approx\mathrm{70}.\mathrm{5}°\right). \\ $$$$ \\ $$$${If}\:\mu\leqslant\mathrm{0}.\mathrm{3706},\:{the}\:{angle}\:\alpha\:{at}\:{which} \\ $$$${the}\:{rod}\:{begins}\:{to}\:{slip}\:{fulfills} \\ $$$$\frac{\mathrm{sin}\:\alpha\:\left(\mathrm{cos}\:\alpha−\frac{\mathrm{2}}{\mathrm{3}}\right)}{\left(\mathrm{cos}\:\alpha−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }=\mu \\ $$$${and}\:\mathrm{0}\leqslant\alpha\leqslant\mathrm{35}.\mathrm{1}° \\ $$$$ \\ $$$${If}\:\mu>\mathrm{0}.\mathrm{3706},\:{the}\:{angle}\:\alpha\:{at}\:{which} \\ $$$${the}\:{rod}\:{begins}\:{to}\:{slip}\:{fulfills} \\ $$$$\frac{\mathrm{sin}\:\alpha\:\left(\mathrm{cos}\:\alpha−\frac{\mathrm{2}}{\mathrm{3}}\right)}{\left(\mathrm{cos}\:\alpha−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }=−\mu \\ $$$${and}\:\mathrm{50}.\mathrm{2}°<\alpha<\mathrm{70}.\mathrm{5}° \\ $$

Commented by mrW1 last updated on 11/Nov/17

To Mr Physics lover:  With μ=6, the rod can not reach  the position (π/2), because already  at 60.5° it begins to slip.

$${To}\:{Mr}\:{Physics}\:{lover}: \\ $$$${With}\:\mu=\mathrm{6},\:{the}\:{rod}\:{can}\:{not}\:{reach} \\ $$$${the}\:{position}\:\frac{\pi}{\mathrm{2}},\:{because}\:{already} \\ $$$${at}\:\mathrm{60}.\mathrm{5}°\:{it}\:{begins}\:{to}\:{slip}. \\ $$

Commented by ajfour last updated on 11/Nov/17

thank you Sir. This is finally  very satisfactory.  before θ becomes cos^(−1) ((2/3))  rod slips if μ happens to be  less than some calculable value  (0.37 as shown in your graph post)  and if it escapes slipping here at  this angle then at θ=cos^(−1) ((2/3))  N=((mg)/4) while friction need not  act (is zero). But as angle grows  beyond this friction reverses  direction and grows. Normal  force must be decreasing and  becomes zero at θ=cos^(−1) ((1/3)).  No value of μ can prevent   slipping by this time (for this  case) so for some given value  of μ>0.37 rod slips for      cos^(−1) ((2/3)) < α < cos^(−1) ((1/3)) ;  while if μ< 0.37 it slips way  before θ=cos^(−1) ((2/3)) .  (This is my conclusion Sir,  because of your kind efforts .)   Thank you Sir.

$${thank}\:{you}\:{Sir}.\:{This}\:{is}\:{finally} \\ $$$${very}\:{satisfactory}. \\ $$$${before}\:\theta\:{becomes}\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$${rod}\:{slips}\:{if}\:\mu\:{happens}\:{to}\:{be} \\ $$$${less}\:{than}\:{some}\:{calculable}\:{value} \\ $$$$\left(\mathrm{0}.\mathrm{37}\:{as}\:{shown}\:{in}\:{your}\:{graph}\:{post}\right) \\ $$$${and}\:{if}\:{it}\:{escapes}\:{slipping}\:{here}\:{at} \\ $$$${this}\:{angle}\:{then}\:{at}\:\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$${N}=\frac{{mg}}{\mathrm{4}}\:{while}\:{friction}\:{need}\:{not} \\ $$$${act}\:\left({is}\:{zero}\right).\:{But}\:{as}\:{angle}\:{grows} \\ $$$${beyond}\:{this}\:{friction}\:{reverses} \\ $$$${direction}\:{and}\:{grows}.\:{Normal} \\ $$$${force}\:{must}\:{be}\:{decreasing}\:{and} \\ $$$${becomes}\:{zero}\:{at}\:\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right). \\ $$$${No}\:{value}\:{of}\:\mu\:{can}\:{prevent}\: \\ $$$${slipping}\:{by}\:{this}\:{time}\:\left({for}\:{this}\right. \\ $$$$\left.{case}\right)\:{so}\:{for}\:{some}\:{given}\:{value} \\ $$$${of}\:\mu>\mathrm{0}.\mathrm{37}\:{rod}\:{slips}\:{for}\: \\ $$$$\:\:\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:<\:\alpha\:<\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:; \\ $$$${while}\:{if}\:\mu<\:\mathrm{0}.\mathrm{37}\:{it}\:{slips}\:{way} \\ $$$${before}\:\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:. \\ $$$$\left({This}\:{is}\:{my}\:{conclusion}\:{Sir},\right. \\ $$$$\left.{because}\:{of}\:{your}\:{kind}\:{efforts}\:.\right) \\ $$$$\:\mathcal{T}{hank}\:{you}\:{Sir}. \\ $$$$ \\ $$

Commented by Physics lover last updated on 11/Nov/17

hmmm.finally.

$${hmmm}.{finally}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com