Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 2400 by Filup last updated on 19/Nov/15

According to Wikipedia and WolframAlpha,  the sign function, sgn(x), is defined as:    sgn(x)≡(x/(∣x∣))=((∣x∣)/x)   for x≠0  and satisfies:  sgn(x)=(√x)(√(1/x))  but  sgn(0)=0    In short:    sgn(x)= { ((1     for x>0)),((0     for x=0)),((−1 for x<0)) :}    Why does sgn(0)=0?

$$\mathrm{According}\:\mathrm{to}\:\mathrm{Wikipedia}\:\mathrm{and}\:\mathrm{WolframAlpha}, \\ $$$$\mathrm{the}\:\mathrm{sign}\:\mathrm{function},\:\mathrm{sgn}\left({x}\right),\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}: \\ $$$$ \\ $$$$\mathrm{sgn}\left({x}\right)\equiv\frac{{x}}{\mid{x}\mid}=\frac{\mid{x}\mid}{{x}}\:\:\:\mathrm{for}\:{x}\neq\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{satisfies}: \\ $$$$\mathrm{sgn}\left({x}\right)=\sqrt{{x}}\sqrt{\frac{\mathrm{1}}{{x}}} \\ $$$$\boldsymbol{{but}} \\ $$$$\mathrm{sgn}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{In}\:\mathrm{short}: \\ $$$$ \\ $$$$\mathrm{sgn}\left({x}\right)=\begin{cases}{\mathrm{1}\:\:\:\:\:\mathrm{for}\:{x}>\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\mathrm{for}\:{x}=\mathrm{0}}\\{−\mathrm{1}\:\mathrm{for}\:{x}<\mathrm{0}}\end{cases} \\ $$$$ \\ $$$$\mathrm{Why}\:\mathrm{does}\:\mathrm{sgn}\left(\mathrm{0}\right)=\mathrm{0}? \\ $$

Commented by Rasheed Soomro last updated on 19/Nov/15

How does sgn(x) satisfy     sgn(x)=(√x)(√(1/x))   ?  For example sgn(−6)=−1  So       −1=(√(−6))(√(1/(−6)))                     =i(√6)×(1/(i(√6)))                     =1?

$${How}\:{does}\:{sgn}\left({x}\right)\:{satisfy} \\ $$$$\:\:\:\mathrm{sgn}\left({x}\right)=\sqrt{{x}}\sqrt{\frac{\mathrm{1}}{{x}}}\:\:\:? \\ $$$${For}\:{example}\:{sgn}\left(−\mathrm{6}\right)=−\mathrm{1} \\ $$$${So}\:\:\:\:\:\:\:−\mathrm{1}=\sqrt{−\mathrm{6}}\sqrt{\frac{\mathrm{1}}{−\mathrm{6}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={i}\sqrt{\mathrm{6}}×\frac{\mathrm{1}}{{i}\sqrt{\mathrm{6}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}? \\ $$

Commented by Filup last updated on 20/Nov/15

I′m not sure how it satisfies. That was  Just what I found online

$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{how}\:\mathrm{it}\:\mathrm{satisfies}.\:\mathrm{That}\:\mathrm{was} \\ $$$$\mathrm{Just}\:\mathrm{what}\:\mathrm{I}\:\mathrm{found}\:\mathrm{online} \\ $$

Commented by Rasheed Soomro last updated on 20/Nov/15

Why does sgn(0)=0?  An Interpretation for  sgn(0)=0  Here 1,0,−1 are  representative_(−)   elements only.   • ′1′  represents the situation x>0   •Opposite situation x<0 is represented by ′ −1 ′ (which is     opposite of ′ 1 ′ )  • x=0 is neutral situation which should be represented      by neutral element that is ′ 0 ′

$$\mathrm{Why}\:\mathrm{does}\:\mathrm{sgn}\left(\mathrm{0}\right)=\mathrm{0}? \\ $$$$\mathcal{A}{n}\:\mathcal{I}{nterpretation}\:{for}\:\:{sgn}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${Here}\:\mathrm{1},\mathrm{0},−\mathrm{1}\:{are}\:\:\underset{−} {{representative}}\:\:{elements}\:{only}. \\ $$$$\:\bullet\:'\mathrm{1}'\:\:{represents}\:{the}\:{situation}\:{x}>\mathrm{0}\: \\ $$$$\bullet{Opposite}\:{situation}\:{x}<\mathrm{0}\:{is}\:{represented}\:{by}\:'\:−\mathrm{1}\:'\:\left({which}\:{is}\right. \\ $$$$\left.\:\:\:{opposite}\:{of}\:'\:\mathrm{1}\:'\:\right) \\ $$$$\bullet\:{x}=\mathrm{0}\:{is}\:{neutral}\:{situation}\:{which}\:{should}\:{be}\:{represented} \\ $$$$\:\:\:\:{by}\:{neutral}\:{element}\:{that}\:{is}\:'\:\mathrm{0}\:' \\ $$

Commented by prakash jain last updated on 20/Nov/15

sgn(x)=(√x)(√(1/x)) is correct  sgn(−6)=(√(−6))×(√(−(1/6)))=−1 (and not 1)  (√(−6))=i(√6)  (√(−(1/6)))=i(1/(√6))

$$\mathrm{sgn}\left({x}\right)=\sqrt{{x}}\sqrt{\frac{\mathrm{1}}{{x}}}\:\mathrm{is}\:\mathrm{correct} \\ $$$$\mathrm{sgn}\left(−\mathrm{6}\right)=\sqrt{−\mathrm{6}}×\sqrt{−\frac{\mathrm{1}}{\mathrm{6}}}=−\mathrm{1}\:\left(\mathrm{and}\:\mathrm{not}\:\mathrm{1}\right) \\ $$$$\sqrt{−\mathrm{6}}={i}\sqrt{\mathrm{6}} \\ $$$$\sqrt{−\frac{\mathrm{1}}{\mathrm{6}}}={i}\frac{\mathrm{1}}{\sqrt{\mathrm{6}}} \\ $$

Answered by 123456 last updated on 19/Nov/15

for a certain things and simetry, read  the definition for complex sign :D  −−−− curiosity  it as generalized to C by/  sgn z=(z/(∣z∣))  this act like a vercsor for complex number  also  sgn z=e^(−ıarg z)   arg 0 is undefined because unlike  z=1=e^(2πkı) ,k∈Z (k=0 is principal argument, 0≤θ<2π)  z=0=0e^(ıθ) ,∀θ∈R  you can pick all angle you want.

$$\mathrm{for}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{things}\:\mathrm{and}\:\mathrm{simetry},\:\mathrm{read} \\ $$$$\mathrm{the}\:\mathrm{definition}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{sign}\::\mathrm{D} \\ $$$$−−−−\:\mathrm{curiosity} \\ $$$$\mathrm{it}\:\mathrm{as}\:\mathrm{generalized}\:\mathrm{to}\:\mathbb{C}\:\mathrm{by}/ \\ $$$$\mathrm{sgn}\:{z}=\frac{{z}}{\mid{z}\mid} \\ $$$$\mathrm{this}\:\mathrm{act}\:\mathrm{like}\:\mathrm{a}\:\mathrm{vercsor}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{also} \\ $$$$\mathrm{sgn}\:{z}={e}^{−\imath\mathrm{arg}\:{z}} \\ $$$$\mathrm{arg}\:\mathrm{0}\:\mathrm{is}\:\mathrm{undefined}\:\mathrm{because}\:\mathrm{unlike} \\ $$$${z}=\mathrm{1}={e}^{\mathrm{2}\pi{k}\imath} ,{k}\in\mathbb{Z}\:\left({k}=\mathrm{0}\:\mathrm{is}\:\mathrm{principal}\:\mathrm{argument},\:\mathrm{0}\leqslant\theta<\mathrm{2}\pi\right) \\ $$$${z}=\mathrm{0}=\mathrm{0}{e}^{\imath\theta} ,\forall\theta\in\mathbb{R} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{pick}\:\mathrm{all}\:\mathrm{angle}\:\mathrm{you}\:\mathrm{want}. \\ $$

Commented by Rasheed Soomro last updated on 19/Nov/15

I didn′t understand somethings:  •this act like a vercsor for complex number  What is vercsor?  •also if you take arg 0=0(wich is undefined)  its flows natural   What does this mean?  Overall the coment is knowledge−increasing.  The idea of generalization of sign to comlex   numbers is inspiring!

$${I}\:{didn}'{t}\:{understand}\:{somethings}: \\ $$$$\bullet\mathrm{this}\:\mathrm{act}\:\mathrm{like}\:\mathrm{a}\:\mathrm{vercsor}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{number} \\ $$$${What}\:{is}\:\mathrm{vercsor}? \\ $$$$\bullet\mathrm{also}\:\mathrm{if}\:\mathrm{you}\:\mathrm{take}\:\mathrm{arg}\:\mathrm{0}=\mathrm{0}\left(\mathrm{wich}\:\mathrm{is}\:\mathrm{undefined}\right) \\ $$$$\mathrm{its}\:\mathrm{flows}\:\mathrm{natural}\:\:\:{What}\:{does}\:{this}\:{mean}? \\ $$$$\mathcal{O}{verall}\:{the}\:{coment}\:{is}\:{knowledge}−{increasing}. \\ $$$${The}\:{idea}\:{of}\:{generalization}\:{of}\:{sign}\:{to}\:{comlex}\: \\ $$$${numbers}\:{is}\:{inspiring}! \\ $$

Commented by Filup last updated on 19/Nov/15

What is arg(z)?  I′ve seen it before

$$\mathrm{What}\:\mathrm{is}\:\mathrm{arg}\left({z}\right)? \\ $$$$\mathrm{I}'\mathrm{ve}\:\mathrm{seen}\:\mathrm{it}\:\mathrm{before} \\ $$

Commented by 123456 last updated on 19/Nov/15

the argument of the complex number  if you consider the complex a vector  it is the angle of it and the real axis

$$\mathrm{the}\:\mathrm{argument}\:\mathrm{of}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{if}\:\mathrm{you}\:\mathrm{consider}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{a}\:\mathrm{vector} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{it}\:\mathrm{and}\:\mathrm{the}\:\mathrm{real}\:\mathrm{axis} \\ $$

Commented by Filup last updated on 19/Nov/15

I see. I haven′t leant much on the complex  plane, so this interests me. I′ll have to  take a look at complex mathematics!

$$\mathrm{I}\:\mathrm{see}.\:\mathrm{I}\:\mathrm{haven}'\mathrm{t}\:\mathrm{leant}\:\mathrm{much}\:\mathrm{on}\:\mathrm{the}\:\mathrm{complex} \\ $$$$\mathrm{plane},\:\mathrm{so}\:\mathrm{this}\:\mathrm{interests}\:\mathrm{me}.\:\mathrm{I}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{take}\:\mathrm{a}\:\mathrm{look}\:\mathrm{at}\:\mathrm{complex}\:\mathrm{mathematics}! \\ $$

Commented by Rasheed Soomro last updated on 19/Nov/15

THank^S

$$\mathcal{TH}{ank}^{\mathcal{S}} \\ $$

Commented by 123456 last updated on 19/Nov/15

vecsor is a vector with unitary module  its ussefull if you want only the direction  of a thing  f_g =G((m_1 m_2 )/(∣r_(12) ^→ ∣))r_(12) ^�   the vecsor r_(12) ^�  only give the direction,  this is the gravitational force into body  1  for the segund  thinked wrong XD  sorry for that

$$\mathrm{vecsor}\:\mathrm{is}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{with}\:\mathrm{unitary}\:\mathrm{module} \\ $$$$\mathrm{its}\:\mathrm{ussefull}\:\mathrm{if}\:\mathrm{you}\:\mathrm{want}\:\mathrm{only}\:\mathrm{the}\:\mathrm{direction} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{thing} \\ $$$$\mathrm{f}_{\mathrm{g}} =\mathrm{G}\frac{{m}_{\mathrm{1}} {m}_{\mathrm{2}} }{\mid\overset{\rightarrow} {{r}}_{\mathrm{12}} \mid}\hat {{r}}_{\mathrm{12}} \\ $$$$\mathrm{the}\:\mathrm{vecsor}\:\hat {{r}}_{\mathrm{12}} \:\mathrm{only}\:\mathrm{give}\:\mathrm{the}\:\mathrm{direction}, \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{gravitational}\:\mathrm{force}\:\mathrm{into}\:\mathrm{body} \\ $$$$\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{segund}\:\:\mathrm{thinked}\:\mathrm{wrong}\:\mathrm{XD} \\ $$$$\mathrm{sorry}\:\mathrm{for}\:\mathrm{that} \\ $$

Commented by Rasheed Soomro last updated on 20/Nov/15

I want to understand clearly:  If z=a+ib then  sgn(a+ib)=((a+ib)/(∣a+ib∣))=(a/(√(a^2 +b^2 )))+((ib)/(√(a^2 +b^2 )))  Clearly  all z having same ∣z∣ have same sgn(z)!  Do all complex numbers having same absolute value  have same sign?

$${I}\:{want}\:{to}\:{understand}\:{clearly}: \\ $$$${If}\:{z}={a}+{ib}\:{then} \\ $$$${sgn}\left({a}+{ib}\right)=\frac{{a}+{ib}}{\mid{a}+{ib}\mid}=\frac{{a}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}+\frac{{ib}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$${Clearly}\:\:{all}\:{z}\:{having}\:{same}\:\mid{z}\mid\:{have}\:{same}\:{sgn}\left({z}\right)! \\ $$$${Do}\:{all}\:{complex}\:{numbers}\:{having}\:{same}\:{absolute}\:{value} \\ $$$${have}\:{same}\:{sign}? \\ $$

Commented by Filup last updated on 20/Nov/15

Absolute Value  z_1 =a_1 +b_1 i    ∣    z_2 =a_2 +b_2 i  ∣z_1 ∣=(√(a_1 ^2 +b_1 ^2 ))    ∣    ∣z_2 ∣=(√(a_2 ^2 +b_2 ^2 ))  ∣z_1 ∣≥0    ∣    ∣z_2 ∣≥0  assume ∣z_1 ∣=∣z_2 ∣    Sign  sgn(z_1 )=e^(i arg(z_1 ))   sgn(z_2 )=e^(i arg(z_2 ))     if when complex functions with equal abs. values  are equal, the sgn are equal, then:    for ∣z_1 ∣=∣z_2 ∣  e^(i arg(z_1 )) =e^(i arg(z_2 ))   ∴arg(z_1 )=arg(z_2 )  arg(a_1 +b_1 i)=arg(a_2 +b_2 i)  (?)

$${Absolute}\:{Value} \\ $$$${z}_{\mathrm{1}} ={a}_{\mathrm{1}} +{b}_{\mathrm{1}} {i}\:\:\:\:\mid\:\:\:\:{z}_{\mathrm{2}} ={a}_{\mathrm{2}} +{b}_{\mathrm{2}} {i} \\ $$$$\mid{z}_{\mathrm{1}} \mid=\sqrt{{a}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} }\:\:\:\:\mid\:\:\:\:\mid{z}_{\mathrm{2}} \mid=\sqrt{{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} } \\ $$$$\mid{z}_{\mathrm{1}} \mid\geqslant\mathrm{0}\:\:\:\:\mid\:\:\:\:\mid{z}_{\mathrm{2}} \mid\geqslant\mathrm{0} \\ $$$${assume}\:\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid \\ $$$$ \\ $$$$\mathrm{S}{ign} \\ $$$$\mathrm{sgn}\left({z}_{\mathrm{1}} \right)={e}^{{i}\:\mathrm{arg}\left({z}_{\mathrm{1}} \right)} \\ $$$$\mathrm{sgn}\left({z}_{\mathrm{2}} \right)={e}^{{i}\:\mathrm{arg}\left({z}_{\mathrm{2}} \right)} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{when}\:\mathrm{complex}\:\mathrm{functions}\:\mathrm{with}\:\mathrm{equal}\:\mathrm{abs}.\:\mathrm{values} \\ $$$$\mathrm{are}\:\mathrm{equal},\:\mathrm{the}\:\mathrm{sgn}\:\mathrm{are}\:\mathrm{equal},\:{then}: \\ $$$$ \\ $$$${for}\:\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid \\ $$$${e}^{{i}\:\mathrm{arg}\left({z}_{\mathrm{1}} \right)} ={e}^{{i}\:\mathrm{arg}\left({z}_{\mathrm{2}} \right)} \\ $$$$\therefore\mathrm{arg}\left({z}_{\mathrm{1}} \right)=\mathrm{arg}\left({z}_{\mathrm{2}} \right) \\ $$$$\mathrm{arg}\left({a}_{\mathrm{1}} +{b}_{\mathrm{1}} {i}\right)=\mathrm{arg}\left({a}_{\mathrm{2}} +{b}_{\mathrm{2}} {i}\right) \\ $$$$\left(?\right) \\ $$

Commented by 123456 last updated on 20/Nov/15

z_1  and z_2  have same sign only if  ∃λ∈R,0<λ<+∞ such that  z_2 =λz_1

$${z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{have}\:\mathrm{same}\:\mathrm{sign}\:\mathrm{only}\:\mathrm{if} \\ $$$$\exists\lambda\in\mathbb{R},\mathrm{0}<\lambda<+\infty\:\mathrm{such}\:\mathrm{that} \\ $$$${z}_{\mathrm{2}} =\lambda{z}_{\mathrm{1}} \\ $$

Commented by prakash jain last updated on 20/Nov/15

z_1 =a_1 +ib_1   arg (z)=arctan(a_1 ,b_1 )  Individual sign of a_1  and b_1 are important.  On Rasheed′s comment  all z having the same ∣z∣ does not mean  same sgn(z)  z_1 =3+4i, z_2 =4+3i  sgn(z_1 )=.6+.8i, sgn(z_2 )=.8+.6i

$${z}_{\mathrm{1}} ={a}_{\mathrm{1}} +{ib}_{\mathrm{1}} \\ $$$$\mathrm{arg}\:\left({z}\right)=\mathrm{arctan}\left({a}_{\mathrm{1}} ,{b}_{\mathrm{1}} \right) \\ $$$$\mathrm{Individual}\:\mathrm{sign}\:\mathrm{of}\:{a}_{\mathrm{1}} \:\mathrm{and}\:{b}_{\mathrm{1}} \mathrm{are}\:\mathrm{important}. \\ $$$$\mathrm{On}\:\mathrm{Rasheed}'\mathrm{s}\:\mathrm{comment} \\ $$$$\mathrm{all}\:{z}\:\mathrm{having}\:\mathrm{the}\:\mathrm{same}\:\mid{z}\mid\:\mathrm{does}\:\mathrm{not}\:\mathrm{mean} \\ $$$$\mathrm{same}\:\mathrm{sgn}\left({z}\right) \\ $$$${z}_{\mathrm{1}} =\mathrm{3}+\mathrm{4}{i},\:{z}_{\mathrm{2}} =\mathrm{4}+\mathrm{3}{i} \\ $$$$\mathrm{sgn}\left({z}_{\mathrm{1}} \right)=.\mathrm{6}+.\mathrm{8}{i},\:\mathrm{sgn}\left({z}_{\mathrm{2}} \right)=.\mathrm{8}+.\mathrm{6}{i} \\ $$

Commented by Rasheed Soomro last updated on 20/Nov/15

THANKS  To All of  You!   I  Was  In MisUnderstanding.

$$\mathcal{THANKS}\:\:\mathcal{T}{o}\:\mathcal{A}{ll}\:{of}\:\:\mathcal{Y}{ou}!\: \\ $$$$\mathcal{I}\:\:\mathcal{W}{as}\:\:\mathcal{I}{n}\:\mathcal{M}{is}\mathcal{U}{nderstanding}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com