Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24025 by ajfour last updated on 11/Nov/17

Commented by ajfour last updated on 11/Nov/17

Find the closest distance of  approach of B and R  (if it is  yet to come) and time after  which they are closest.  Situation has been shown for  t=0 . (Assume constant velocities)  B continues along its road and  so does R .  B is the blue vehicle, and R the  red one, both roads are inclined  at ∠ α to each other.

$${Find}\:{the}\:{closest}\:{distance}\:{of} \\ $$$${approach}\:{of}\:{B}\:{and}\:{R}\:\:\left({if}\:{it}\:{is}\right. \\ $$$$\left.{yet}\:{to}\:{come}\right)\:{and}\:{time}\:{after} \\ $$$${which}\:{they}\:{are}\:{closest}. \\ $$$${Situation}\:{has}\:{been}\:{shown}\:{for} \\ $$$${t}=\mathrm{0}\:.\:\left({Assume}\:{constant}\:{velocities}\right) \\ $$$${B}\:{continues}\:{along}\:{its}\:{road}\:{and} \\ $$$${so}\:{does}\:{R}\:. \\ $$$${B}\:{is}\:{the}\:{blue}\:{vehicle},\:{and}\:{R}\:{the} \\ $$$${red}\:{one},\:{both}\:{roads}\:{are}\:{inclined} \\ $$$${at}\:\angle\:\alpha\:{to}\:{each}\:{other}. \\ $$

Commented by ajfour last updated on 12/Nov/17

Commented by ajfour last updated on 12/Nov/17

  Let shortest distance of approach  be d_s .     let initial distance be L_0  .      L_0 ^2 =(a+bcos α)^2 +b^2 sin^2 α      d_s =L_0 sin (β+θ)      v_(net) ^2  =(u−vcos α)^2 +v^2 sin^2 α       t_s =((L_0 cos (β+θ))/v_(net) )      tan β =((bsin α)/(a+bcos α))      tan θ = ((vsin α)/(u−vcos α))   d_s =L_0 sin (β+θ)       =L_0 (sin βcos θ+cos βsin θ)   d_s =bsin α(((u−vcos α)/v_(net) ))+               +(a+bcos α)(((vsin α)/v_(net) ))   t_s = L_0 cos (β+θ)/v_(net)       =L_0 (cos βcos θ−sin βsin θ)      =(a+bcos α)(((u−vcos α)/v_(net) ^2 ))−             (bsin α)(((vsin α)/v_(net) ^2 )) .  where,      v_(net) =(√((u−vcos α)^2 +v^2 sin^2 α))  .

$$\:\:{Let}\:{shortest}\:{distance}\:{of}\:{approach} \\ $$$${be}\:\boldsymbol{{d}}_{\boldsymbol{{s}}} . \\ $$$$\:\:\:{let}\:{initial}\:{distance}\:{be}\:{L}_{\mathrm{0}} \:. \\ $$$$\:\:\:\:{L}_{\mathrm{0}} ^{\mathrm{2}} =\left({a}+{b}\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha \\ $$$$\:\:\:\:{d}_{{s}} ={L}_{\mathrm{0}} \mathrm{sin}\:\left(\beta+\theta\right) \\ $$$$\:\:\:\:{v}_{{net}} ^{\mathrm{2}} \:=\left({u}−{v}\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{v}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha \\ $$$$\:\:\:\:\:{t}_{{s}} =\frac{{L}_{\mathrm{0}} \mathrm{cos}\:\left(\beta+\theta\right)}{{v}_{{net}} } \\ $$$$\:\:\:\:\mathrm{tan}\:\beta\:=\frac{{b}\mathrm{sin}\:\alpha}{{a}+{b}\mathrm{cos}\:\alpha} \\ $$$$\:\:\:\:\mathrm{tan}\:\theta\:=\:\frac{{v}\mathrm{sin}\:\alpha}{{u}−{v}\mathrm{cos}\:\alpha}\: \\ $$$${d}_{{s}} ={L}_{\mathrm{0}} \mathrm{sin}\:\left(\beta+\theta\right) \\ $$$$\:\:\:\:\:={L}_{\mathrm{0}} \left(\mathrm{sin}\:\beta\mathrm{cos}\:\theta+\mathrm{cos}\:\beta\mathrm{sin}\:\theta\right) \\ $$$$\:{d}_{{s}} ={b}\mathrm{sin}\:\alpha\left(\frac{{u}−{v}\mathrm{cos}\:\alpha}{{v}_{{net}} }\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\frac{{v}\mathrm{sin}\:\alpha}{{v}_{{net}} }\right)\: \\ $$$${t}_{{s}} =\:{L}_{\mathrm{0}} \mathrm{cos}\:\left(\beta+\theta\right)/{v}_{{net}} \\ $$$$\:\:\:\:={L}_{\mathrm{0}} \left(\mathrm{cos}\:\beta\mathrm{cos}\:\theta−\mathrm{sin}\:\beta\mathrm{sin}\:\theta\right) \\ $$$$\:\:\:\:=\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\frac{{u}−{v}\mathrm{cos}\:\alpha}{{v}_{{net}} ^{\mathrm{2}} }\right)− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left({b}\mathrm{sin}\:\alpha\right)\left(\frac{{v}\mathrm{sin}\:\alpha}{{v}_{{net}} ^{\mathrm{2}} }\right)\:. \\ $$$${where}, \\ $$$$\:\:\:\:{v}_{{net}} =\sqrt{\left({u}−{v}\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{v}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha}\:\:. \\ $$

Commented by Physics lover last updated on 12/Nov/17

thats exactly how i thought.

$${thats}\:{exactly}\:{how}\:{i}\:{thought}. \\ $$

Answered by mrW1 last updated on 12/Nov/17

at t=0, the distance between B and R:  L_0 =(√((a+bcos α)^2 +(bsin α)^2 ))  =(√(a^2 +b^2 +2abcos α))    at t:  L=(√([a−ut+(b+vt)cos α]^2 +[(b+vt)sin α]^2 ))  let D=L^2   D=[a−ut+(b+vt)cos α]^2 +[(b+vt)sin α]^2   =[a+bcos α−(1−cos α)ut]^2 +[bsin α+sin αvt]^2   =(a+bcos α)^2 −2(a+bcos α)(1−cos α)ut+(1−cos α)^2 u^2 t^2 +b^2 sin^2  α+2bsin^2  αvt+sin^2  α v^2 t^2   =[(a+bcos α)^2 +b^2 sin^2  α]−2[u(a+bcos α)(1−cos α)+vbsin^2  α]t+[u^2 (1−cos α)^2 +v^2 sin^2  α]t^2   =[u^2 (1−cos α)^2 +v^2 sin^2  α]t^2 −2[u(a+bcos α)(1−cos α)+vbsin^2  α]t+[a^2 +b^2 +2abcos α]  =pt^2 −2qt+r  =p(t−(q/p))^2 +(r−(q^2 /p))  since p>0, there is a minimum for D  at t=t_m =(q/p)=((u(a+bcos α)(1−cos α)+vbsin^2  α)/(u^2 (1−cos α)^2 +v^2 sin^2  α))  D_(min) =r−(q^2 /p)  =[a^2 +b^2 +2abcos α]−(([u(a+bcos α)(1−cos α)+vbsin^2  α]^2 )/(u^2 (1−cos α)^2 +v^2 sin^2  α))  L_(min) =(√([a^2 +b^2 +2abcos α]−(([u(a+bcos α)(1−cos α)+vbsin^2  α]^2 )/(u^2 (1−cos α)^2 +v^2 sin^2  α))))

$${at}\:{t}=\mathrm{0},\:{the}\:{distance}\:{between}\:{B}\:{and}\:{R}: \\ $$$${L}_{\mathrm{0}} =\sqrt{\left({a}+{b}\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +\left({b}\mathrm{sin}\:\alpha\right)^{\mathrm{2}} } \\ $$$$=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\mathrm{cos}\:\alpha} \\ $$$$ \\ $$$${at}\:{t}: \\ $$$${L}=\sqrt{\left[{a}−{ut}+\left({b}+{vt}\right)\mathrm{cos}\:\alpha\right]^{\mathrm{2}} +\left[\left({b}+{vt}\right)\mathrm{sin}\:\alpha\right]^{\mathrm{2}} } \\ $$$${let}\:{D}={L}^{\mathrm{2}} \\ $$$${D}=\left[{a}−{ut}+\left({b}+{vt}\right)\mathrm{cos}\:\alpha\right]^{\mathrm{2}} +\left[\left({b}+{vt}\right)\mathrm{sin}\:\alpha\right]^{\mathrm{2}} \\ $$$$=\left[{a}+{b}\mathrm{cos}\:\alpha−\left(\mathrm{1}−\mathrm{cos}\:\alpha\right){ut}\right]^{\mathrm{2}} +\left[{b}\mathrm{sin}\:\alpha+\mathrm{sin}\:\alpha{vt}\right]^{\mathrm{2}} \\ $$$$=\left({a}+{b}\mathrm{cos}\:\alpha\right)^{\mathrm{2}} −\mathrm{2}\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right){ut}+\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)^{\mathrm{2}} {u}^{\mathrm{2}} {t}^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha+\mathrm{2}{b}\mathrm{sin}^{\mathrm{2}} \:\alpha{vt}+\mathrm{sin}^{\mathrm{2}} \:\alpha\:{v}^{\mathrm{2}} {t}^{\mathrm{2}} \\ $$$$=\left[\left({a}+{b}\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha\right]−\mathrm{2}\left[{u}\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)+{vb}\mathrm{sin}^{\mathrm{2}} \:\alpha\right]{t}+\left[{u}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{v}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha\right]{t}^{\mathrm{2}} \\ $$$$=\left[{u}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{v}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha\right]{t}^{\mathrm{2}} −\mathrm{2}\left[{u}\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)+{vb}\mathrm{sin}^{\mathrm{2}} \:\alpha\right]{t}+\left[{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\mathrm{cos}\:\alpha\right] \\ $$$$={pt}^{\mathrm{2}} −\mathrm{2}{qt}+{r} \\ $$$$={p}\left({t}−\frac{{q}}{{p}}\right)^{\mathrm{2}} +\left({r}−\frac{{q}^{\mathrm{2}} }{{p}}\right) \\ $$$${since}\:{p}>\mathrm{0},\:{there}\:{is}\:{a}\:{minimum}\:{for}\:{D} \\ $$$${at}\:{t}={t}_{{m}} =\frac{{q}}{{p}}=\frac{{u}\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)+{vb}\mathrm{sin}^{\mathrm{2}} \:\alpha}{{u}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{v}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha} \\ $$$${D}_{{min}} ={r}−\frac{{q}^{\mathrm{2}} }{{p}} \\ $$$$=\left[{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\mathrm{cos}\:\alpha\right]−\frac{\left[{u}\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)+{vb}\mathrm{sin}^{\mathrm{2}} \:\alpha\right]^{\mathrm{2}} }{{u}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{v}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha} \\ $$$${L}_{{min}} =\sqrt{\left[{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\mathrm{cos}\:\alpha\right]−\frac{\left[{u}\left({a}+{b}\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)+{vb}\mathrm{sin}^{\mathrm{2}} \:\alpha\right]^{\mathrm{2}} }{{u}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +{v}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha}} \\ $$

Commented by ajfour last updated on 12/Nov/17

thank you Sir, please view my  solution sir ..

$${thank}\:{you}\:{Sir},\:{please}\:{view}\:{my} \\ $$$${solution}\:{sir}\:.. \\ $$

Commented by mrW1 last updated on 14/Nov/17

your solution is more simple and  direct.

$${your}\:{solution}\:{is}\:{more}\:{simple}\:{and} \\ $$$${direct}. \\ $$

Commented by ajfour last updated on 15/Nov/17

thanks for the appreciation, Sir!

$${thanks}\:{for}\:{the}\:{appreciation},\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com