Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 24142 by Tinkutara last updated on 13/Nov/17

Prove that  Σ_(r=1) ^(2n−1) (−1)^(r−1) (∫_0 ^1 x^r (1−x)^(2n−r) dx)  =∫_0 ^1 [(1−x)^(2n) +x^(2n) −(1−x)^(2n+1) −x^(2n+1) ]dx

Provethat2n1r=1(1)r1(10xr(1x)2nrdx)=10[(1x)2n+x2n(1x)2n+1x2n+1]dx

Commented by Tinkutara last updated on 13/Nov/17

Thank you very much Sir!

ThankyouverymuchSir!

Commented by moxhix last updated on 13/Nov/17

⇔ShowΣ_(r=1) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r) =(1−x)^(2n) +x^(2n) −(1−x)^(2n+1) −x^(2n+1)   Let S=Σ_(r=1) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r)    (1−x)S+xS=Σ_(r=1) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r+1) +Σ_(r=1) ^(2n−1) (−1)^(r−1) x^(r+1) (1−x)^(2n−r)                            S={x(1−x)^(2n) +Σ_(r=2) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r+1) }+{Σ_(r=1) ^(2n−2) (−1)^(r−1) x^(r+1) (1−x)^(2n−r) +x^(2n) (1−x)}                           S=x(1−x)^(2n) +x^(2n) (1−x)+Σ_(r=2) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r+1) +{Σ_(r=2) ^(2n−1) (−1)^(r−2) x^r (1−x)^(2n−r+1) }_(r→r−1)                            S=x(1−x)^(2n) +x^(2n) (1−x)+Σ_(r=2) ^(2n−1) {(−1)^(r−1) x^r (1−x)^(2n−r+1) +(−1)^(r−2) x^r (1−x)^(2n−r+1) }                           S=x(1−x)^(2n) +x^(2n) (1−x)+Σ_(r=2) ^(2n−1) x^r (1−x)^(2n−r+1) {(−1)^(r−1) +(−1)^(r−2) }_(↑=0)                            S=x(1−x)^(2n) +x^(2n) (1−x)                           S={−(1−x)+1}(1−x)^(2n) +x^(2n) (1−x)                           S=(1−x)^(2n) −(1−x)^(2n+1) +x^(2n) −x^(2n+1)

Show2n1r=1(1)r1xr(1x)2nr=(1x)2n+x2n(1x)2n+1x2n+1LetS=2n1r=1(1)r1xr(1x)2nr(1x)S+xS=2n1r=1(1)r1xr(1x)2nr+1+2n1r=1(1)r1xr+1(1x)2nrS={x(1x)2n+2n1r=2(1)r1xr(1x)2nr+1}+{2n2r=1(1)r1xr+1(1x)2nr+x2n(1x)}S=x(1x)2n+x2n(1x)+2n1r=2(1)r1xr(1x)2nr+1+{2n1r=2(1)r2xr(1x)2nr+1}rr1S=x(1x)2n+x2n(1x)+2n1r=2{(1)r1xr(1x)2nr+1+(1)r2xr(1x)2nr+1}S=x(1x)2n+x2n(1x)+2n1r=2xr(1x)2nr+1{(1)r1+(1)r2}↑=0S=x(1x)2n+x2n(1x)S={(1x)+1}(1x)2n+x2n(1x)S=(1x)2n(1x)2n+1+x2nx2n+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com