Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24149 by ajfour last updated on 13/Nov/17

Answered by mrW1 last updated on 13/Nov/17

x_1 =s_1   y_1 =0  x_2 =x_1 +s_2 cos α=s_1 +s_2 cos α  y_2 =s_2 sin α  x_3 =x_2 +s_3 cos 2α=s_1 +s_2 cos α+s_3 cos 2α  y_3 =y_2 +s_3 sin 2α=s_2 sin α+s_3 sin 2α  let a=(d^2 s_1 /dt^2 )=acceleration of M  let b=(d^2 s_2 /dt^2 )  let c=(d^2 s_3 /dt^2 )  a_(1x) =a  a_(1y) =0  a_(2x) =a+bcos α  a_(2y) =bsin α  a_(3x) =a+bcos α+ccos 2α  a_(3y) =bsin α+csin 2α    −N_2 sin 2α=m_0 a_(3x) =m_0 (a+bcos α+ccos 2α)  N_2 cos 2α−m_0 g=m_0 a_(3y) =m_0 (bsin α+csin 2α)    −N_1 sin α+N_2 sin 2α=ma_(2x) =m(a+bcos α)  N_1 cos α−N_2 cos 2α−mg=ma_(2y) =m(bsin α)    N_1 sin α=Ma_(1x) =Ma  N_0 −N_1 cos α−Mg=Ma_(1y) =0    ⇒N_1 =((Ma)/(sin α))  ⇒N_2 sin 2α=m(a+bcos α)+Ma    ⇒Matan α−[Ma+m(a+bcos α)]cot 2α−mg=m(bsin α)  ⇒Mtan α a−[Ma+ma+mbcos α]cot 2α−mg=mbsin α  ⇒[Mtan α −(M+m)cot 2α]a−m[sin α+cos α cot 2α]b=mg  ...(i)    ⇒−m(a+bcos α)−Ma=m_0 (a+bcos α+ccos 2α)  ⇒[(m+m_0 )cos α]b+[m_0 cos 2α]c=−(M+m+m_0 )a    ⇒[ma+mbcos α+Ma]cot 2α−m_0 g=m_0 (bsin α+csin 2α)  ⇒[m_0 sin α+mcos αcot 2α]b−[m_0 sin 2α]c=m_0 g−[(M+m)cot 2α]a    ⇒[(M+m+m_0 )sin 2α+(M+m)cot 2α cos 2α]a+[(m+m_0 )cos α sin 2α+(m_0 sin α+mcos αcot 2α)cos 2α]b=m_0 gcos 2α    ((Mtan α −(M+m)cot 2α)/(m(sin α+cos α cot 2α)))×a −b=(g/(sin α+cos α cot 2α))  (((M+m+m_0 )sin 2α+(M+m)cot 2α cos 2α)/((m_0 sin α+mcos αcot 2α)cos 2α))×a+b=((m_0 gcos 2α)/((m_0 sin α+mcos αcot 2α)cos 2α))    ⇒a=(((1/(sin α+cos α cot 2α))+(m_0 /(m_0 sin α+mcos αcot 2α)))/(((Mtan α −(M+m)cot 2α)/(m(sin α+cos α cot 2α)))+(((M+m+m_0 )tan 2α+(M+m)cot 2α)/(m_0 sin α+mcos αcot 2α))))×g  ⇒a=((mm_0 sin α+m(m+m_0 )cos αcot 2α)/([Mtan α −(M+m)cot 2α][m_0 sin α+mcos αcot 2α]+m(sin α+cos α cot 2α)[(M+m+m_0 )tan 2α+(M+m)cot 2α]))×g

$${x}_{\mathrm{1}} ={s}_{\mathrm{1}} \\ $$$${y}_{\mathrm{1}} =\mathrm{0} \\ $$$${x}_{\mathrm{2}} ={x}_{\mathrm{1}} +{s}_{\mathrm{2}} \mathrm{cos}\:\alpha={s}_{\mathrm{1}} +{s}_{\mathrm{2}} \mathrm{cos}\:\alpha \\ $$$${y}_{\mathrm{2}} ={s}_{\mathrm{2}} \mathrm{sin}\:\alpha \\ $$$${x}_{\mathrm{3}} ={x}_{\mathrm{2}} +{s}_{\mathrm{3}} \mathrm{cos}\:\mathrm{2}\alpha={s}_{\mathrm{1}} +{s}_{\mathrm{2}} \mathrm{cos}\:\alpha+{s}_{\mathrm{3}} \mathrm{cos}\:\mathrm{2}\alpha \\ $$$${y}_{\mathrm{3}} ={y}_{\mathrm{2}} +{s}_{\mathrm{3}} \mathrm{sin}\:\mathrm{2}\alpha={s}_{\mathrm{2}} \mathrm{sin}\:\alpha+{s}_{\mathrm{3}} \mathrm{sin}\:\mathrm{2}\alpha \\ $$$${let}\:{a}=\frac{{d}^{\mathrm{2}} {s}_{\mathrm{1}} }{{dt}^{\mathrm{2}} }={acceleration}\:{of}\:{M} \\ $$$${let}\:{b}=\frac{{d}^{\mathrm{2}} {s}_{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$${let}\:{c}=\frac{{d}^{\mathrm{2}} {s}_{\mathrm{3}} }{{dt}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{1}{x}} ={a} \\ $$$${a}_{\mathrm{1}{y}} =\mathrm{0} \\ $$$${a}_{\mathrm{2}{x}} ={a}+{b}\mathrm{cos}\:\alpha \\ $$$${a}_{\mathrm{2}{y}} ={b}\mathrm{sin}\:\alpha \\ $$$${a}_{\mathrm{3}{x}} ={a}+{b}\mathrm{cos}\:\alpha+{c}\mathrm{cos}\:\mathrm{2}\alpha \\ $$$${a}_{\mathrm{3}{y}} ={b}\mathrm{sin}\:\alpha+{c}\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$ \\ $$$$−{N}_{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\alpha={m}_{\mathrm{0}} {a}_{\mathrm{3}{x}} ={m}_{\mathrm{0}} \left({a}+{b}\mathrm{cos}\:\alpha+{c}\mathrm{cos}\:\mathrm{2}\alpha\right) \\ $$$${N}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\alpha−{m}_{\mathrm{0}} {g}={m}_{\mathrm{0}} {a}_{\mathrm{3}{y}} ={m}_{\mathrm{0}} \left({b}\mathrm{sin}\:\alpha+{c}\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$$$ \\ $$$$−{N}_{\mathrm{1}} \mathrm{sin}\:\alpha+{N}_{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\alpha={ma}_{\mathrm{2}{x}} ={m}\left({a}+{b}\mathrm{cos}\:\alpha\right) \\ $$$${N}_{\mathrm{1}} \mathrm{cos}\:\alpha−{N}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\alpha−{mg}={ma}_{\mathrm{2}{y}} ={m}\left({b}\mathrm{sin}\:\alpha\right) \\ $$$$ \\ $$$${N}_{\mathrm{1}} \mathrm{sin}\:\alpha={Ma}_{\mathrm{1}{x}} ={Ma} \\ $$$${N}_{\mathrm{0}} −{N}_{\mathrm{1}} \mathrm{cos}\:\alpha−{Mg}={Ma}_{\mathrm{1}{y}} =\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{{Ma}}{\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow{N}_{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\alpha={m}\left({a}+{b}\mathrm{cos}\:\alpha\right)+{Ma} \\ $$$$ \\ $$$$\Rightarrow{Ma}\mathrm{tan}\:\alpha−\left[{Ma}+{m}\left({a}+{b}\mathrm{cos}\:\alpha\right)\right]\mathrm{cot}\:\mathrm{2}\alpha−{mg}={m}\left({b}\mathrm{sin}\:\alpha\right) \\ $$$$\Rightarrow{M}\mathrm{tan}\:\alpha\:{a}−\left[{Ma}+{ma}+{mb}\mathrm{cos}\:\alpha\right]\mathrm{cot}\:\mathrm{2}\alpha−{mg}={mb}\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\left[{M}\mathrm{tan}\:\alpha\:−\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha\right]{a}−{m}\left[\mathrm{sin}\:\alpha+\mathrm{cos}\:\alpha\:\mathrm{cot}\:\mathrm{2}\alpha\right]{b}={mg}\:\:...\left({i}\right) \\ $$$$ \\ $$$$\Rightarrow−{m}\left({a}+{b}\mathrm{cos}\:\alpha\right)−{Ma}={m}_{\mathrm{0}} \left({a}+{b}\mathrm{cos}\:\alpha+{c}\mathrm{cos}\:\mathrm{2}\alpha\right) \\ $$$$\Rightarrow\left[\left({m}+{m}_{\mathrm{0}} \right)\mathrm{cos}\:\alpha\right]{b}+\left[{m}_{\mathrm{0}} \mathrm{cos}\:\mathrm{2}\alpha\right]{c}=−\left({M}+{m}+{m}_{\mathrm{0}} \right){a} \\ $$$$ \\ $$$$\Rightarrow\left[{ma}+{mb}\mathrm{cos}\:\alpha+{Ma}\right]\mathrm{cot}\:\mathrm{2}\alpha−{m}_{\mathrm{0}} {g}={m}_{\mathrm{0}} \left({b}\mathrm{sin}\:\alpha+{c}\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$$$\Rightarrow\left[{m}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha\right]{b}−\left[{m}_{\mathrm{0}} \mathrm{sin}\:\mathrm{2}\alpha\right]{c}={m}_{\mathrm{0}} {g}−\left[\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha\right]{a} \\ $$$$ \\ $$$$\Rightarrow\left[\left({M}+{m}+{m}_{\mathrm{0}} \right)\mathrm{sin}\:\mathrm{2}\alpha+\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha\:\mathrm{cos}\:\mathrm{2}\alpha\right]{a}+\left[\left({m}+{m}_{\mathrm{0}} \right)\mathrm{cos}\:\alpha\:\mathrm{sin}\:\mathrm{2}\alpha+\left({m}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha\right)\mathrm{cos}\:\mathrm{2}\alpha\right]{b}={m}_{\mathrm{0}} {g}\mathrm{cos}\:\mathrm{2}\alpha \\ $$$$ \\ $$$$\frac{{M}\mathrm{tan}\:\alpha\:−\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha}{{m}\left(\mathrm{sin}\:\alpha+\mathrm{cos}\:\alpha\:\mathrm{cot}\:\mathrm{2}\alpha\right)}×{a}\:−{b}=\frac{{g}}{\mathrm{sin}\:\alpha+\mathrm{cos}\:\alpha\:\mathrm{cot}\:\mathrm{2}\alpha} \\ $$$$\frac{\left({M}+{m}+{m}_{\mathrm{0}} \right)\mathrm{sin}\:\mathrm{2}\alpha+\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha\:\mathrm{cos}\:\mathrm{2}\alpha}{\left({m}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha\right)\mathrm{cos}\:\mathrm{2}\alpha}×{a}+{b}=\frac{{m}_{\mathrm{0}} {g}\mathrm{cos}\:\mathrm{2}\alpha}{\left({m}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha\right)\mathrm{cos}\:\mathrm{2}\alpha} \\ $$$$ \\ $$$$\Rightarrow{a}=\frac{\frac{\mathrm{1}}{\mathrm{sin}\:\alpha+\mathrm{cos}\:\alpha\:\mathrm{cot}\:\mathrm{2}\alpha}+\frac{{m}_{\mathrm{0}} }{{m}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha}}{\frac{{M}\mathrm{tan}\:\alpha\:−\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha}{{m}\left(\mathrm{sin}\:\alpha+\mathrm{cos}\:\alpha\:\mathrm{cot}\:\mathrm{2}\alpha\right)}+\frac{\left({M}+{m}+{m}_{\mathrm{0}} \right)\mathrm{tan}\:\mathrm{2}\alpha+\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha}{{m}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha}}×{g} \\ $$$$\Rightarrow{a}=\frac{{mm}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\left({m}+{m}_{\mathrm{0}} \right)\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha}{\left[{M}\mathrm{tan}\:\alpha\:−\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha\right]\left[{m}_{\mathrm{0}} \mathrm{sin}\:\alpha+{m}\mathrm{cos}\:\alpha\mathrm{cot}\:\mathrm{2}\alpha\right]+{m}\left(\mathrm{sin}\:\alpha+\mathrm{cos}\:\alpha\:\mathrm{cot}\:\mathrm{2}\alpha\right)\left[\left({M}+{m}+{m}_{\mathrm{0}} \right)\mathrm{tan}\:\mathrm{2}\alpha+\left({M}+{m}\right)\mathrm{cot}\:\mathrm{2}\alpha\right]}×{g} \\ $$

Commented by ajfour last updated on 13/Nov/17

Sir, after lot of calculations,  I however, got a simpler   expression for acceleration of M.   a=((m(m+m_0 )gsin αcos α)/(M(m+m_0 sin^2 α)+msin^2 α(m−m_0 cos 2α))) .

$${Sir},\:{after}\:{lot}\:{of}\:{calculations}, \\ $$$${I}\:{however},\:{got}\:{a}\:{simpler}\: \\ $$$${expression}\:{for}\:{acceleration}\:{of}\:{M}. \\ $$$$\:\boldsymbol{{a}}=\frac{{m}\left({m}+{m}_{\mathrm{0}} \right){g}\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha}{{M}\left({m}+{m}_{\mathrm{0}} \mathrm{sin}\:^{\mathrm{2}} \alpha\right)+{m}\mathrm{sin}\:^{\mathrm{2}} \alpha\left({m}−{m}_{\mathrm{0}} \mathrm{cos}\:\mathrm{2}\alpha\right)}\:. \\ $$

Commented by mrW1 last updated on 13/Nov/17

Great!

$${Great}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com