Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24172 by ajfour last updated on 13/Nov/17

Commented by ajfour last updated on 13/Nov/17

Q.24149 (solution)

$${Q}.\mathrm{24149}\:\left({solution}\right) \\ $$

Answered by ajfour last updated on 13/Nov/17

Let acceleration of lower wedge  be A, and relative acceleration  of upper wedge with respect to  lower one be a_r .  Then along normal to incline  of m, we have from forces on m_0 :  m_0 gcos 2α+m_0 a_r sin α = N_1   And along normal to incline of  M, we have from forces on m:  N_1 cos α+mgcos α=N_2 +mAsin α  Along incline of M, from    forces on m:  mgsin α+mAcos α−N_1 sin α=ma_r   And along horizontal, force on   M yields:  N_2 sin α = MA  solving these , I arrive at result    A=((m(m+m_0 ) gsin 𝛂cos 𝛂)/(M(m+m_0 sin^2 𝛂)+msin^2 𝛂(m−m_0 cos 2𝛂))) .

$${Let}\:{acceleration}\:{of}\:{lower}\:{wedge} \\ $$$${be}\:\boldsymbol{{A}},\:{and}\:{relative}\:{acceleration} \\ $$$${of}\:{upper}\:{wedge}\:{with}\:{respect}\:{to} \\ $$$${lower}\:{one}\:{be}\:\boldsymbol{{a}}_{\boldsymbol{{r}}} . \\ $$$${Then}\:{along}\:{normal}\:{to}\:{incline} \\ $$$${of}\:{m},\:{we}\:{have}\:{from}\:{forces}\:{on}\:{m}_{\mathrm{0}} : \\ $$$${m}_{\mathrm{0}} {g}\mathrm{cos}\:\mathrm{2}\alpha+{m}_{\mathrm{0}} {a}_{{r}} \mathrm{sin}\:\alpha\:=\:{N}_{\mathrm{1}} \\ $$$${And}\:{along}\:{normal}\:{to}\:{incline}\:{of} \\ $$$${M},\:{we}\:{have}\:{from}\:{forces}\:{on}\:{m}: \\ $$$${N}_{\mathrm{1}} \mathrm{cos}\:\alpha+{mg}\mathrm{cos}\:\alpha={N}_{\mathrm{2}} +{mA}\mathrm{sin}\:\alpha \\ $$$${Along}\:{incline}\:{of}\:{M},\:{from}\: \\ $$$$\:{forces}\:{on}\:{m}: \\ $$$${mg}\mathrm{sin}\:\alpha+{mA}\mathrm{cos}\:\alpha−{N}_{\mathrm{1}} \mathrm{sin}\:\alpha={ma}_{{r}} \\ $$$${And}\:{along}\:{horizontal},\:{force}\:{on}\: \\ $$$${M}\:{yields}: \\ $$$${N}_{\mathrm{2}} \mathrm{sin}\:\alpha\:=\:{MA} \\ $$$${solving}\:{these}\:,\:{I}\:{arrive}\:{at}\:{result} \\ $$$$\:\:\boldsymbol{{A}}=\frac{\boldsymbol{{m}}\left(\boldsymbol{{m}}+\boldsymbol{{m}}_{\mathrm{0}} \right)\:\boldsymbol{{g}}\mathrm{sin}\:\boldsymbol{\alpha}\mathrm{cos}\:\boldsymbol{\alpha}}{\boldsymbol{{M}}\left(\boldsymbol{{m}}+\boldsymbol{{m}}_{\mathrm{0}} \mathrm{sin}\:^{\mathrm{2}} \boldsymbol{\alpha}\right)+\boldsymbol{{m}}\mathrm{sin}\:^{\mathrm{2}} \boldsymbol{\alpha}\left(\boldsymbol{{m}}−\boldsymbol{{m}}_{\mathrm{0}} \mathrm{cos}\:\mathrm{2}\boldsymbol{\alpha}\right)}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com