Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 24286 by Joel577 last updated on 15/Nov/17

If ∣x∣ < 1 then  (x + 1)(x^2  + 1)(x^4  + 1)(x^8  + 1)(x^(16)  + 1).....  is equal to

$$\mathrm{If}\:\mid{x}\mid\:<\:\mathrm{1}\:\mathrm{then} \\ $$ $$\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)..... \\ $$ $$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Answered by mrW1 last updated on 15/Nov/17

let P_n =(x + 1)(x^2  + 1)(x^4  + 1)(x^8  + 1)(x^(16)  + 1).....(x^2^n  +1)  (x−1)P_n =(x−1)(x + 1)(x^2  + 1)(x^4  + 1)(x^8  + 1)(x^(16)  + 1).....(x^2^n  +1)  (x−1)P_n =(x^2 −1)(x^2  + 1)(x^4  + 1)(x^8  + 1)(x^(16)  + 1).....(x^2^n  +1)  (x−1)P_n =(x^4 −1)(x^4  + 1)(x^8  + 1)(x^(16)  + 1).....(x^2^n  +1)  ......  (x−1)P_n =(x^2^n  − 1)(x^2^n  +1)  (x−1)P_n =x^2^(n+1)  −1  ⇒P_n =((1−x^2^(n+1)  )/(1−x))  lim_(n→∞)  P_n =(1/(1−x))  ⇒(x + 1)(x^2  + 1)(x^4  + 1)(x^8  + 1)(x^(16)  + 1).....=(1/(1−x))

$${let}\:{P}_{{n}} =\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right).....\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$ $$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}−\mathrm{1}\right)\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right).....\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$ $$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right).....\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$ $$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}^{\mathrm{4}} −\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right).....\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$ $$...... \\ $$ $$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}^{\mathrm{2}^{{n}} } −\:\mathrm{1}\right)\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$ $$\left({x}−\mathrm{1}\right){P}_{{n}} ={x}^{\mathrm{2}^{{n}+\mathrm{1}} } −\mathrm{1} \\ $$ $$\Rightarrow{P}_{{n}} =\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}} \\ $$ $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{P}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$ $$\Rightarrow\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right).....=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$

Commented bymath solver last updated on 16/Nov/17

sir, can you explain your last step  when n tending to infinity?

$$\mathrm{sir},\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{your}\:\mathrm{last}\:\mathrm{step} \\ $$ $$\mathrm{when}\:\mathrm{n}\:\mathrm{tending}\:\mathrm{to}\:\mathrm{infinity}? \\ $$

Commented bymrW1 last updated on 16/Nov/17

we have P_n =((1−x^2^(n+1)  )/(1−x))  when n→∞,  2^(n+1) →∞  since ∣x∣<1  x^2^(n+1)  →0  P_n →((1−0)/(1−x))=(1/(1−x))

$${we}\:{have}\:{P}_{{n}} =\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}} \\ $$ $${when}\:{n}\rightarrow\infty, \\ $$ $$\mathrm{2}^{{n}+\mathrm{1}} \rightarrow\infty \\ $$ $${since}\:\mid{x}\mid<\mathrm{1} \\ $$ $${x}^{\mathrm{2}^{{n}+\mathrm{1}} } \rightarrow\mathrm{0} \\ $$ $${P}_{{n}} \rightarrow\frac{\mathrm{1}−\mathrm{0}}{\mathrm{1}−{x}}=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$

Commented bymath solver last updated on 16/Nov/17

okk, i didn′t  read ∣x∣ < 1.

$$\mathrm{okk},\:\mathrm{i}\:\mathrm{didn}'\mathrm{t}\:\:\mathrm{read}\:\mid\mathrm{x}\mid\:<\:\mathrm{1}. \\ $$

Commented byJoel577 last updated on 16/Nov/17

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com