Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24301 by Tinkutara last updated on 15/Nov/17

In the figure shown below, all surfaces  are smooth, strings and pulley are ideal.  If the wedge is moving with acceleration  a towards the right, then the acceleration  of the block with respect to the wedge  at that instant is

$$\mathrm{In}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{shown}\:\mathrm{below},\:\mathrm{all}\:\mathrm{surfaces} \\ $$$$\mathrm{are}\:\mathrm{smooth},\:\mathrm{strings}\:\mathrm{and}\:\mathrm{pulley}\:\mathrm{are}\:\mathrm{ideal}. \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{wedge}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{acceleration} \\ $$$${a}\:\mathrm{towards}\:\mathrm{the}\:\mathrm{right},\:\mathrm{then}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{block}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{wedge} \\ $$$$\mathrm{at}\:\mathrm{that}\:\mathrm{instant}\:\mathrm{is} \\ $$

Commented by Tinkutara last updated on 15/Nov/17

Commented by ajfour last updated on 15/Nov/17

let length of string from top of  wedge to block m be y and from  wall pulley to wedge be x. Then  y+x+(√(h^2 +x^2 )) =l  ⇒   v_(rel) +v_M +((xv_M )/(√(h^2 +x^2 ))) =0  or  a_(rel) +a+(((v_M ^2 +xa)(√(h^2 +x^2 ))−xv_M (((xv_M )/(√(h^2 +x^2 )))))/(h^2 +x^2 )) =0  so  a_(rel) =−a−(((v_M ^2 +xa)(h^2 +x^2 )−(xv_M )^2 )/((h^2 +x^2 )(√(h^2 +x^2 ))))        =−a−((h^2 (v_M ^2 +xa)+x^3 a)/((h^2 +x^2 )(√(h^2 +x^2 ))))       =−a−((h^2 v_M ^2 )/((h^2 +x^2 )^(3/2) ))−((xa)/(√(h^2 +x^2 )))  if only system has started now  from rest and initial relation  is sought for, we can have    v_M =0       a_(rel)  = −a(1+cos θ_0 )  the minus sign is there because   ((dx/dt)) is −ve here, and ((dy/dt)) is +ve  if wedge accelerates towards right.  so  ((d^2 x/dt^2 )) = a    (i have assumed)  but according to question it  is ((d^2 x/dt^2 )) =−a_(given in question)  .  given answer must be        a_(rel)  =a(1+cos θ) .

$${let}\:{length}\:{of}\:{string}\:{from}\:{top}\:{of} \\ $$$${wedge}\:{to}\:{block}\:{m}\:{be}\:{y}\:{and}\:{from} \\ $$$${wall}\:{pulley}\:{to}\:{wedge}\:{be}\:{x}.\:{Then} \\ $$$${y}+{x}+\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:={l} \\ $$$$\Rightarrow\:\:\:{v}_{{rel}} +{v}_{{M}} +\frac{{xv}_{{M}} }{\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }}\:=\mathrm{0} \\ $$$${or}\:\:{a}_{{rel}} +{a}+\frac{\left({v}_{{M}} ^{\mathrm{2}} +{xa}\right)\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }−{xv}_{{M}} \left(\frac{{xv}_{{M}} }{\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }}\right)}{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:=\mathrm{0} \\ $$$${so}\:\:{a}_{{rel}} =−{a}−\frac{\left({v}_{{M}} ^{\mathrm{2}} +{xa}\right)\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)−\left({xv}_{{M}} \right)^{\mathrm{2}} }{\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:=−{a}−\frac{{h}^{\mathrm{2}} \left({v}_{{M}} ^{\mathrm{2}} +{xa}\right)+{x}^{\mathrm{3}} {a}}{\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:=−{a}−\frac{{h}^{\mathrm{2}} {v}_{{M}} ^{\mathrm{2}} }{\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }−\frac{{xa}}{\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{2}} }} \\ $$$${if}\:{only}\:{system}\:{has}\:{started}\:{now} \\ $$$${from}\:{rest}\:{and}\:{initial}\:{relation} \\ $$$${is}\:{sought}\:{for},\:{we}\:{can}\:{have} \\ $$$$\:\:{v}_{{M}} =\mathrm{0} \\ $$$$\:\:\:\:\:{a}_{{rel}} \:=\:−{a}\left(\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{0}} \right) \\ $$$${the}\:{minus}\:{sign}\:{is}\:{there}\:{because} \\ $$$$\:\left(\frac{{dx}}{{dt}}\right)\:{is}\:−{ve}\:{here},\:{and}\:\left(\frac{{dy}}{{dt}}\right)\:{is}\:+{ve} \\ $$$${if}\:{wedge}\:{accelerates}\:{towards}\:{right}. \\ $$$${so}\:\:\left(\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\right)\:=\:{a}\:\:\:\:\left({i}\:{have}\:{assumed}\right) \\ $$$${but}\:{according}\:{to}\:{question}\:{it} \\ $$$${is}\:\left(\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\right)\:=−{a}_{{given}\:{in}\:{question}} \:. \\ $$$${given}\:{answer}\:{must}\:{be}\: \\ $$$$\:\:\:\:\:{a}_{{rel}} \:={a}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\:. \\ $$

Commented by Tinkutara last updated on 15/Nov/17

Thank you very much Sir!  Your solution is right.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$$$\mathrm{Your}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{right}. \\ $$

Commented by Tinkutara last updated on 15/Nov/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com