Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2441 by Yozzi last updated on 20/Nov/15

Prove or disprove that , for even   positive n,  2×Σ_(k=1) ^((n/2)−1) (−1)^k  ((n),(k) )+(−1)^((n/2)) ((n!)/(((n/2)!)^2 ))=−2

$${Prove}\:{or}\:{disprove}\:{that}\:,\:{for}\:{even}\: \\ $$$${positive}\:{n}, \\ $$$$\mathrm{2}×\underset{{k}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}+\left(−\mathrm{1}\right)^{\left({n}/\mathrm{2}\right)} \frac{{n}!}{\left(\left({n}/\mathrm{2}\right)!\right)^{\mathrm{2}} }=−\mathrm{2} \\ $$

Commented by Rasheed Soomro last updated on 20/Nov/15

It is false when  n=2  In Σ_(k=1) ^((n/2)−1)   ...         (n/2)−1 should be greater than k=1  But for n=2 it is 0<1

$${It}\:{is}\:{false}\:{when}\:\:{n}=\mathrm{2} \\ $$$${In}\:\underset{{k}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}−\mathrm{1}} {\sum}}\:\:... \\ $$$$\:\:\:\:\:\:\:\frac{{n}}{\mathrm{2}}−\mathrm{1}\:{should}\:{be}\:{greater}\:{than}\:{k}=\mathrm{1} \\ $$$${But}\:{for}\:{n}=\mathrm{2}\:{it}\:{is}\:\mathrm{0}<\mathrm{1} \\ $$

Commented by Yozzi last updated on 20/Nov/15

Thanks. I wanted to ensure my belief  that it is an incorrect equation  for n=2 is true.

$${Thanks}.\:{I}\:{wanted}\:{to}\:{ensure}\:{my}\:{belief} \\ $$$${that}\:{it}\:{is}\:{an}\:{incorrect}\:{equation} \\ $$$${for}\:{n}=\mathrm{2}\:{is}\:{true}. \\ $$

Commented by prakash jain last updated on 20/Nov/15

0=(1−1)^n =Σ_(i=0) ^n (−1)^i ^n C_i     = (−1)^0 ^n C_0 +Σ_(i=1) ^((n/2)−1) (−1)^i ^n C_i  + (−1)^(n/2) ^n C_(n/2)                                 + Σ_(i=(n/2)+1) ^(n−1) (−1)^i ^n C_i +(−1)^n ^n C_n    ...(1)  Given^n C_r =^n C_(n−r)  and (−1)^i =(−1)^(n−i)  (n even)    Σ_(i=1) ^((n/2)−1) (−1)^i ^n C_i  =Σ_(i=(n/2)+1) ^(n−1) (−1)^i ^n C_i       ....(2)  So (1) can be written as  0=1+2×Σ_(i=1) ^((n/2)−1) (−1)^i ^n C_i +(−1)^(n/2)  ((n!)/(((n/2)!)^2 ))+1  −2=2×Σ_(i=1) ^((n/2)−1) (−1)^i ^n C_i +(−1)^(n/2)  ((n!)/(((n/2)!)^2 ))   QED

$$\mathrm{0}=\left(\mathrm{1}−\mathrm{1}\right)^{{n}} =\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \:^{{n}} {C}_{{i}} \\ $$$$\:\:=\:\left(−\mathrm{1}\right)^{\mathrm{0}} \:^{{n}} {C}_{\mathrm{0}} +\underset{{i}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \:^{{n}} {C}_{{i}} \:+\:\left(−\mathrm{1}\right)^{{n}/\mathrm{2}} \:^{{n}} {C}_{{n}/\mathrm{2}} \: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\underset{{i}=\frac{{n}}{\mathrm{2}}+\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \:^{{n}} {C}_{{i}} +\left(−\mathrm{1}\right)^{{n}} \:^{{n}} {C}_{{n}} \:\:\:...\left(\mathrm{1}\right) \\ $$$$\mathrm{Given}\:^{{n}} {C}_{{r}} =\:^{{n}} {C}_{{n}−{r}} \:{and}\:\left(−\mathrm{1}\right)^{{i}} =\left(−\mathrm{1}\right)^{{n}−{i}} \:\left({n}\:{even}\right) \\ $$$$\:\:\underset{{i}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \:^{{n}} {C}_{{i}} \:=\underset{{i}=\frac{{n}}{\mathrm{2}}+\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \:^{{n}} {C}_{{i}} \:\:\:\:\:\:....\left(\mathrm{2}\right) \\ $$$${S}\mathrm{o}\:\left(\mathrm{1}\right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as} \\ $$$$\mathrm{0}=\mathrm{1}+\mathrm{2}×\underset{{i}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \:^{{n}} {C}_{{i}} +\left(−\mathrm{1}\right)^{{n}/\mathrm{2}} \:\frac{{n}!}{\left(\left({n}/\mathrm{2}\right)!\right)^{\mathrm{2}} }+\mathrm{1} \\ $$$$−\mathrm{2}=\mathrm{2}×\underset{{i}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \:^{{n}} {C}_{{i}} +\left(−\mathrm{1}\right)^{{n}/\mathrm{2}} \:\frac{{n}!}{\left(\left({n}/\mathrm{2}\right)!\right)^{\mathrm{2}} }\: \\ $$$$\mathrm{QED} \\ $$

Answered by prakash jain last updated on 20/Nov/15

proof given in comment.  for n=2  k=1 to (n/2)−1 results in zero terms see (2)  in comments.  The result is valid for n=2.

$${proof}\:{given}\:{in}\:{comment}. \\ $$$${for}\:{n}=\mathrm{2} \\ $$$${k}=\mathrm{1}\:{to}\:\frac{{n}}{\mathrm{2}}−\mathrm{1}\:{results}\:{in}\:{zero}\:{terms}\:{see}\:\left(\mathrm{2}\right) \\ $$$${in}\:{comments}. \\ $$$${The}\:{result}\:{is}\:{valid}\:{for}\:{n}=\mathrm{2}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com