Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24460 by sushmitak last updated on 18/Nov/17

A uniform rod of AB of mass  m=1.12 kg and lengtj l=100cm is  placed on a sharp support O such that  AO=a=40cm. To keep the rod  horizontal, its end A is ties with a  thread. Calculate reaction of support  O on the rod when the thread is burnt.  (g=10 m∙s^(−2) )

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{rod}\:\mathrm{of}\:\mathrm{AB}\:\mathrm{of}\:\mathrm{mass} \\ $$$$\mathrm{m}=\mathrm{1}.\mathrm{12}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{lengtj}\:\mathrm{l}=\mathrm{100cm}\:\mathrm{is} \\ $$$$\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{sharp}\:\mathrm{support}\:\mathrm{O}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{AO}={a}=\mathrm{40}{cm}.\:\mathrm{To}\:\mathrm{keep}\:\mathrm{the}\:\mathrm{rod} \\ $$$$\mathrm{horizontal},\:\mathrm{its}\:\mathrm{end}\:\mathrm{A}\:\mathrm{is}\:\mathrm{ties}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{thread}.\:\mathrm{Calculate}\:\mathrm{reaction}\:\mathrm{of}\:\mathrm{support} \\ $$$$\mathrm{O}\:\mathrm{on}\:\mathrm{the}\:\mathrm{rod}\:\mathrm{when}\:\mathrm{the}\:\mathrm{thread}\:\mathrm{is}\:\mathrm{burnt}. \\ $$$$\left({g}=\mathrm{10}\:\mathrm{m}\centerdot\mathrm{s}^{−\mathrm{2}} \right) \\ $$

Commented by sushmitak last updated on 18/Nov/17

Commented by ajfour last updated on 18/Nov/17

Torque about O :    mg(((b−a)/2)) =[((ml^2 )/(12))+m(((b−a)/2))^2 ]α  ⇒ α = ((6g(b−a))/(l^2 +3(b−a)^2 ))  Also    mg−N_O  = mα(((b−a)/2))  ⇒ N_O =mg−((3mg(b−a)^2 )/(l^2 +3(b−a)^2 ))        N_O = ((mg)/(1+3(((b−a)/l))^2 ))   .               =((11.2)/(1+0.12)) = 10 N .

$${Torque}\:{about}\:{O}\:: \\ $$$$\:\:{mg}\left(\frac{{b}−{a}}{\mathrm{2}}\right)\:=\left[\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}+{m}\left(\frac{{b}−{a}}{\mathrm{2}}\right)^{\mathrm{2}} \right]\alpha \\ $$$$\Rightarrow\:\alpha\:=\:\frac{\mathrm{6}{g}\left({b}−{a}\right)}{{l}^{\mathrm{2}} +\mathrm{3}\left({b}−{a}\right)^{\mathrm{2}} } \\ $$$${Also}\:\:\:\:{mg}−{N}_{{O}} \:=\:{m}\alpha\left(\frac{{b}−{a}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:{N}_{{O}} ={mg}−\frac{\mathrm{3}{mg}\left({b}−{a}\right)^{\mathrm{2}} }{{l}^{\mathrm{2}} +\mathrm{3}\left({b}−{a}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\boldsymbol{{N}}_{{O}} =\:\frac{{mg}}{\mathrm{1}+\mathrm{3}\left(\frac{{b}−{a}}{{l}}\right)^{\mathrm{2}} }\:\:\:. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{11}.\mathrm{2}}{\mathrm{1}+\mathrm{0}.\mathrm{12}}\:=\:\mathrm{10}\:{N}\:. \\ $$

Commented by sushmitak last updated on 18/Nov/17

Thank You very much Sir!

$$\mathrm{Thank}\:\mathrm{You}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com