Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24477 by sushmitak last updated on 18/Nov/17

A particle moving horizonatally  collides perpendiculrly at one end  of  a rod having equal mass and  placed on a horizontal surface.  The book says that particle will  continue to move along the same  direction regardless of value of  e (coefficient of restitution).    I did not understand the logic.  please help.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{horizonatally} \\ $$$$\mathrm{collides}\:\mathrm{perpendiculrly}\:\mathrm{at}\:\mathrm{one}\:\mathrm{end} \\ $$$$\mathrm{of}\:\:\mathrm{a}\:\mathrm{rod}\:\mathrm{having}\:\mathrm{equal}\:\mathrm{mass}\:\mathrm{and} \\ $$$$\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{surface}. \\ $$$$\mathrm{The}\:\mathrm{book}\:\mathrm{says}\:\mathrm{that}\:\mathrm{particle}\:\mathrm{will} \\ $$$$\mathrm{continue}\:\mathrm{to}\:\mathrm{move}\:\mathrm{along}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{direction}\:\mathrm{regardless}\:\mathrm{of}\:\mathrm{value}\:\mathrm{of} \\ $$$${e}\:\left(\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitution}\right). \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{logic}. \\ $$$$\mathrm{please}\:\mathrm{help}. \\ $$

Commented by sushmitak last updated on 18/Nov/17

Commented by sushmitak last updated on 18/Nov/17

My work so far  initial velocity of ball u  final velocity of ball v_1   velocity of center of mass of rod v_2   angular velocity of rod at CM=ω  e=1  v=v_1 +v_2   angular momentum at CM  mu(l/2)=mv_1 (l/2)+Iw=mv_1 (l/2)+m(l^2 /(12))ω  (1/2)mu^2 =(1/2)mv_1 ^2 +(1/2)mv_2 ^2 +(1/2)Iω^2   Are the equation correct?  thnls for your help

$$\mathrm{My}\:\mathrm{work}\:\mathrm{so}\:\mathrm{far} \\ $$$$\mathrm{initial}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{ball}\:{u} \\ $$$$\mathrm{final}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{ball}\:{v}_{\mathrm{1}} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{center}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{rod}\:{v}_{\mathrm{2}} \\ $$$$\mathrm{angular}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{rod}\:\mathrm{at}\:\mathrm{CM}=\omega \\ $$$${e}=\mathrm{1} \\ $$$${v}={v}_{\mathrm{1}} +{v}_{\mathrm{2}} \\ $$$${angular}\:{momentum}\:{at}\:{CM} \\ $$$${mu}\frac{{l}}{\mathrm{2}}={mv}_{\mathrm{1}} \frac{{l}}{\mathrm{2}}+{Iw}={mv}_{\mathrm{1}} \frac{{l}}{\mathrm{2}}+{m}\frac{{l}^{\mathrm{2}} }{\mathrm{12}}\omega \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{mu}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{mv}_{\mathrm{1}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{mv}_{\mathrm{2}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} \\ $$$$\mathrm{Are}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{correct}? \\ $$$$\mathrm{thnls}\:\mathrm{for}\:\mathrm{your}\:\mathrm{help} \\ $$

Answered by mrW1 last updated on 19/Nov/17

Commented by mrW1 last updated on 19/Nov/17

velocity of buttom of rod  v_2 ′=v_2 +((lω)/2)  v_2 ′−v_1 =eu  ⇒v_2 +((lω)/2)−v_1 =eu   ...(i)  mu=mv_1 +mv_2   ⇒v_2 =u−v_1    ...(ii)  mv_2 (l/2)−((ml^2 )/(12))ω=0  ⇒w=((6v_2 )/l)   ...(iii)    (ii) and (iii) into (i):  u−v_1 +(l/2)×(6/l)(u−v_1 )−v_1 =eu  4u−5v_1 =eu  ⇒v_1 =((4−e)/5)×u  since 0≤∣e∣≤1,⇒ v_1 >0, that means  after the hit the ball moves always  in the same direction as before the hit.

$${velocity}\:{of}\:{buttom}\:{of}\:{rod} \\ $$$${v}_{\mathrm{2}} '={v}_{\mathrm{2}} +\frac{{l}\omega}{\mathrm{2}} \\ $$$${v}_{\mathrm{2}} '−{v}_{\mathrm{1}} ={eu} \\ $$$$\Rightarrow{v}_{\mathrm{2}} +\frac{{l}\omega}{\mathrm{2}}−{v}_{\mathrm{1}} ={eu}\:\:\:...\left({i}\right) \\ $$$${mu}={mv}_{\mathrm{1}} +{mv}_{\mathrm{2}} \\ $$$$\Rightarrow{v}_{\mathrm{2}} ={u}−{v}_{\mathrm{1}} \:\:\:...\left({ii}\right) \\ $$$${mv}_{\mathrm{2}} \frac{{l}}{\mathrm{2}}−\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}\omega=\mathrm{0} \\ $$$$\Rightarrow{w}=\frac{\mathrm{6}{v}_{\mathrm{2}} }{{l}}\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$$\left({ii}\right)\:{and}\:\left({iii}\right)\:{into}\:\left({i}\right): \\ $$$${u}−{v}_{\mathrm{1}} +\frac{{l}}{\mathrm{2}}×\frac{\mathrm{6}}{{l}}\left({u}−{v}_{\mathrm{1}} \right)−{v}_{\mathrm{1}} ={eu} \\ $$$$\mathrm{4}{u}−\mathrm{5}{v}_{\mathrm{1}} ={eu} \\ $$$$\Rightarrow{v}_{\mathrm{1}} =\frac{\mathrm{4}−{e}}{\mathrm{5}}×{u} \\ $$$${since}\:\mathrm{0}\leqslant\mid{e}\mid\leqslant\mathrm{1},\Rightarrow\:{v}_{\mathrm{1}} >\mathrm{0},\:{that}\:{means} \\ $$$${after}\:{the}\:{hit}\:{the}\:{ball}\:{moves}\:{always} \\ $$$${in}\:{the}\:{same}\:{direction}\:{as}\:{before}\:{the}\:{hit}. \\ $$

Commented by mrW1 last updated on 19/Nov/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com