Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24526 by ajfour last updated on 20/Nov/17

Commented by ajfour last updated on 20/Nov/17

A thin rod rotates in horizontal  plane with a constant angular   velocity 𝛚.From its farther end  a needle emerges at a constant  relative velocity u along the rod.  Find the initial absolute   acceleration of the tip of the   needle taking O to be the origin.

$${A}\:{thin}\:{rod}\:{rotates}\:{in}\:{horizontal} \\ $$$${plane}\:{with}\:{a}\:{constant}\:{angular}\: \\ $$$${velocity}\:\boldsymbol{\omega}.{From}\:{its}\:{farther}\:{end} \\ $$$${a}\:{needle}\:{emerges}\:{at}\:{a}\:{constant} \\ $$$${relative}\:{velocity}\:\boldsymbol{{u}}\:{along}\:{the}\:{rod}. \\ $$$${Find}\:{the}\:{initial}\:{absolute}\: \\ $$$${acceleration}\:{of}\:{the}\:{tip}\:{of}\:{the}\: \\ $$$${needle}\:{taking}\:{O}\:{to}\:{be}\:{the}\:{origin}. \\ $$

Answered by ajfour last updated on 20/Nov/17

Answered by sma3l2996 last updated on 20/Nov/17

we have : OA^(→) =re_r ^→    with  e_r ^→ =(r^→ /r) and  e_θ ^→ it′s normal vector (e_r ^→ ⊥e_θ ^→ )  so v^→ (A)=((dOA^(→) )/dt)=(dr/dt)e_r ^→ +r(de_r ^→ /dt)=ue_r ^→ +rωe_θ ^→   a^→ (A)=((dv^→ (A))/dt)=u(de_r ^→ /dt)+ω((dr/dt)e_(θ ) ^→ +r(de_θ ^→ /dt))  =uωe_θ ^→ +ω(ue_θ ^→ −rwe_r ^→ )  a^→ (A)=−rω^2 e_r ^→ +2uωe_θ ^→

$${we}\:{have}\::\:\overset{\rightarrow} {{OA}}={r}\overset{\rightarrow} {{e}}_{{r}} \: \\ $$$${with}\:\:\overset{\rightarrow} {{e}}_{{r}} =\frac{\overset{\rightarrow} {{r}}}{{r}}\:{and}\:\:\overset{\rightarrow} {{e}}_{\theta} {it}'{s}\:{normal}\:{vector}\:\left(\overset{\rightarrow} {{e}}_{{r}} \bot\overset{\rightarrow} {{e}}_{\theta} \right) \\ $$$${so}\:\overset{\rightarrow} {{v}}\left({A}\right)=\frac{{d}\overset{\rightarrow} {{OA}}}{{dt}}=\frac{{dr}}{{dt}}\overset{\rightarrow} {{e}}_{{r}} +{r}\frac{{d}\overset{\rightarrow} {{e}}_{{r}} }{{dt}}={u}\overset{\rightarrow} {{e}}_{{r}} +{r}\omega\overset{\rightarrow} {{e}}_{\theta} \\ $$$$\overset{\rightarrow} {{a}}\left({A}\right)=\frac{{d}\overset{\rightarrow} {{v}}\left({A}\right)}{{dt}}={u}\frac{{d}\overset{\rightarrow} {{e}}_{{r}} }{{dt}}+\omega\left(\frac{{dr}}{{dt}}\overset{\rightarrow} {{e}}_{\theta\:} +{r}\frac{{d}\overset{\rightarrow} {{e}}_{\theta} }{{dt}}\right) \\ $$$$={u}\omega\overset{\rightarrow} {{e}}_{\theta} +\omega\left({u}\overset{\rightarrow} {{e}}_{\theta} −{rw}\overset{\rightarrow} {{e}}_{{r}} \right) \\ $$$$\overset{\rightarrow} {{a}}\left({A}\right)=−{r}\omega^{\mathrm{2}} \overset{\rightarrow} {{e}}_{{r}} +\mathrm{2}{u}\omega\overset{\rightarrow} {{e}}_{\theta} \\ $$

Commented by ajfour last updated on 20/Nov/17

Thanks.

$${Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com