Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2454 by Yozzi last updated on 20/Nov/15

Find smallest a>1 for which                        ((a+sinx)/(a+siny))≤e^(y−x)   for ∀ x≤y.

$${Find}\:{smallest}\:{a}>\mathrm{1}\:{for}\:{which} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}+{sinx}}{{a}+{siny}}\leqslant{e}^{{y}−{x}} \\ $$ $${for}\:\forall\:{x}\leqslant{y}. \\ $$

Commented byRasheed Soomro last updated on 21/Nov/15

Find smallest a>1 for which   ((a+sinx)/(a+siny))≤e^(y−x)   for ∀ x≤y.  −−−−−−−−−−−   ((a+sin x)/(a+sin y))≤e^(y−x)   a+sin x≤e^(y−x) (a+sin y)                    ≤ae^(y−x) +e^(y−x) sin y  a−ae^(y−x) ≤e^(y−x) sin y −sin x  a(1−e^(y−x) )≤e^(y−x) sin y −sin x  a≤((e^(y−x) sin y −sin x)/(1−e^(y−x) ))      assuming y>x [for y=x see sec A]  Since a>1  1<a≤((e^(y−x) sin y −sin x)/(1−e^(y−x) ))  a=Smallest ((e^(y−x) sin y −sin x)/(1−e^(y−x) ))>1  We have to use such values of x and y for which_(−)   ((e^(y−x) sin y −sin x)/(1−e^(y−x) )) is smallest but greater than 1_(−)   For y=x............................section A   ((a+sinx)/(a+siny))≤e^(y−x)    ((a+sin x)/(a+sin x))≤e^(x−x)   1≤1    No help for a  Continue

$${Find}\:{smallest}\:{a}>\mathrm{1}\:{for}\:{which} \\ $$ $$\:\frac{{a}+{sinx}}{{a}+{siny}}\leqslant{e}^{{y}−{x}} \\ $$ $${for}\:\forall\:{x}\leqslant{y}. \\ $$ $$−−−−−−−−−−− \\ $$ $$\:\frac{{a}+{sin}\:{x}}{{a}+{sin}\:{y}}\leqslant{e}^{{y}−{x}} \\ $$ $${a}+{sin}\:{x}\leqslant{e}^{{y}−{x}} \left({a}+{sin}\:{y}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leqslant{ae}^{{y}−{x}} +{e}^{{y}−{x}} {sin}\:{y} \\ $$ $${a}−{ae}^{{y}−{x}} \leqslant{e}^{{y}−{x}} {sin}\:{y}\:−{sin}\:{x} \\ $$ $${a}\left(\mathrm{1}−{e}^{{y}−{x}} \right)\leqslant{e}^{{y}−{x}} {sin}\:{y}\:−{sin}\:{x} \\ $$ $${a}\leqslant\frac{{e}^{{y}−{x}} {sin}\:{y}\:−{sin}\:{x}}{\mathrm{1}−{e}^{{y}−{x}} }\:\:\:\:\:\:{assuming}\:{y}>{x}\:\left[{for}\:{y}={x}\:{see}\:{sec}\:{A}\right] \\ $$ $${Since}\:{a}>\mathrm{1} \\ $$ $$\mathrm{1}<{a}\leqslant\frac{{e}^{{y}−{x}} {sin}\:{y}\:−{sin}\:{x}}{\mathrm{1}−{e}^{{y}−{x}} } \\ $$ $${a}={Smallest}\:\frac{{e}^{{y}−{x}} {sin}\:{y}\:−{sin}\:{x}}{\mathrm{1}−{e}^{{y}−{x}} }>\mathrm{1} \\ $$ $$\underset{−} {{We}\:{have}\:{to}\:{use}\:{such}\:{values}\:{of}\:{x}\:{and}\:{y}\:{for}\:{which}} \\ $$ $$\underset{−} {\frac{{e}^{{y}−{x}} {sin}\:{y}\:−{sin}\:{x}}{\mathrm{1}−{e}^{{y}−{x}} }\:{is}\:{smallest}\:{but}\:{greater}\:{than}\:\mathrm{1}} \\ $$ $${For}\:{y}={x}............................{section}\:{A} \\ $$ $$\:\frac{{a}+{sinx}}{{a}+{siny}}\leqslant{e}^{{y}−{x}} \\ $$ $$\:\frac{{a}+{sin}\:{x}}{{a}+{sin}\:{x}}\leqslant{e}^{{x}−{x}} \\ $$ $$\mathrm{1}\leqslant\mathrm{1}\:\:\:\:{No}\:{help}\:{for}\:{a} \\ $$ $${Continue} \\ $$

Commented byprakash jain last updated on 20/Nov/15

Since a>1, a+sin y>0 and e^x >0  we can rewrite the inequality as  f(x,y)=ae^x +e^x sin x−(ae^y +e^y sin y)  For f(x,y) ≤0, we need to chose a such  that value at maxima is 0.  f_x =ae^x +e^x sin x+e^x cos x  f_y =−(ae^y +e^x sin y+e^x cos y)  function f will attain maxima or minima  when f_x  and f_y  are both 0.  f_x =0⇒e^x (a+sin x+cos x)=0  a+(√2)sin (x+(π/4))=0  similarly  a+(√2)sin (y+(π/4))=0  The critical points are given by:  x=2πn+2tan^(−1) (((−(√(2−a^2 ))−1)/(a−1))), n∈Z  y=2πm+2tan^(−1) (((−(√(2−a^2 ))−1)/(a−1))), m∈Z  The problem statement is to chose a such  that f(x,y)≤0 at critical points.  To be continued in answer.

$$\mathrm{Since}\:{a}>\mathrm{1},\:{a}+\mathrm{sin}\:{y}>\mathrm{0}\:{and}\:{e}^{{x}} >\mathrm{0} \\ $$ $$\mathrm{we}\:\mathrm{can}\:\mathrm{rewrite}\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{as} \\ $$ $${f}\left({x},{y}\right)={ae}^{{x}} +{e}^{{x}} \mathrm{sin}\:{x}−\left({ae}^{{y}} +{e}^{{y}} \mathrm{sin}\:{y}\right) \\ $$ $$\mathrm{For}\:{f}\left({x},{y}\right)\:\leqslant\mathrm{0},\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{chose}\:{a}\:\mathrm{such} \\ $$ $$\mathrm{that}\:\mathrm{value}\:\mathrm{at}\:\mathrm{maxima}\:\mathrm{is}\:\mathrm{0}. \\ $$ $${f}_{{x}} ={ae}^{{x}} +{e}^{{x}} \mathrm{sin}\:{x}+{e}^{{x}} \mathrm{cos}\:{x} \\ $$ $${f}_{{y}} =−\left({ae}^{{y}} +{e}^{{x}} \mathrm{sin}\:{y}+{e}^{{x}} \mathrm{cos}\:{y}\right) \\ $$ $${function}\:{f}\:{will}\:{attain}\:{maxima}\:{or}\:{minima} \\ $$ $${when}\:{f}_{{x}} \:{and}\:{f}_{{y}} \:{are}\:{both}\:\mathrm{0}. \\ $$ $${f}_{{x}} =\mathrm{0}\Rightarrow{e}^{{x}} \left({a}+\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)=\mathrm{0} \\ $$ $${a}+\sqrt{\mathrm{2}}\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{0} \\ $$ $$\mathrm{similarly} \\ $$ $${a}+\sqrt{\mathrm{2}}\mathrm{sin}\:\left({y}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{0} \\ $$ $$\mathrm{The}\:\mathrm{critical}\:\mathrm{points}\:\mathrm{are}\:\mathrm{given}\:\mathrm{by}: \\ $$ $${x}=\mathrm{2}\pi{n}+\mathrm{2tan}^{−\mathrm{1}} \left(\frac{−\sqrt{\mathrm{2}−{a}^{\mathrm{2}} }−\mathrm{1}}{{a}−\mathrm{1}}\right),\:{n}\in\mathbb{Z} \\ $$ $${y}=\mathrm{2}\pi{m}+\mathrm{2tan}^{−\mathrm{1}} \left(\frac{−\sqrt{\mathrm{2}−{a}^{\mathrm{2}} }−\mathrm{1}}{{a}−\mathrm{1}}\right),\:{m}\in\mathbb{Z} \\ $$ $$\mathrm{The}\:\mathrm{problem}\:\mathrm{statement}\:\mathrm{is}\:\mathrm{to}\:\mathrm{chose}\:{a}\:\mathrm{such} \\ $$ $$\mathrm{that}\:{f}\left({x},{y}\right)\leqslant\mathrm{0}\:\mathrm{at}\:\mathrm{critical}\:\mathrm{points}. \\ $$ $$\mathrm{To}\:\mathrm{be}\:\mathrm{continued}\:\mathrm{in}\:\mathrm{answer}. \\ $$

Answered by prakash jain last updated on 20/Nov/15

At critical point of f(x,y) sinx=siny  so the given inequality is satisfied by all  a>1 (∵e^(y−x) ≥1)  I am not 100% confident of the answer  since I expected a value different than 1.  comments?  The answer a=1 is wrong (see comments  below).   Wrong conclusion was arrived as critical  points for f(x,y) in the comments are only  for LOCAL MAXIMA.

$$\mathrm{At}\:\mathrm{critical}\:\mathrm{point}\:\mathrm{of}\:{f}\left({x},{y}\right)\:\mathrm{sin}{x}=\mathrm{sin}{y} \\ $$ $$\mathrm{so}\:\mathrm{the}\:\mathrm{given}\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{satisfied}\:\mathrm{by}\:\mathrm{all} \\ $$ $${a}>\mathrm{1}\:\left(\because{e}^{{y}−{x}} \geqslant\mathrm{1}\right) \\ $$ $$\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{100\%}\:\mathrm{confident}\:\mathrm{of}\:\mathrm{the}\:\mathrm{answer} \\ $$ $$\mathrm{since}\:\mathrm{I}\:\mathrm{expected}\:\mathrm{a}\:\mathrm{value}\:\mathrm{different}\:\mathrm{than}\:\mathrm{1}. \\ $$ $$\mathrm{comments}? \\ $$ $$\mathrm{The}\:\mathrm{answer}\:{a}=\mathrm{1}\:\mathrm{is}\:\mathrm{wrong}\:\left(\mathrm{see}\:\mathrm{comments}\right. \\ $$ $$\left.\mathrm{below}\right).\: \\ $$ $$\mathrm{Wrong}\:\mathrm{conclusion}\:\mathrm{was}\:\mathrm{arrived}\:\mathrm{as}\:\mathrm{critical} \\ $$ $$\mathrm{points}\:\mathrm{for}\:{f}\left({x},{y}\right)\:\mathrm{in}\:\mathrm{the}\:\mathrm{comments}\:\mathrm{are}\:\mathrm{only} \\ $$ $$\mathrm{for}\:\mathrm{LOCAL}\:\mathrm{MAXIMA}.\: \\ $$

Commented byYozzi last updated on 20/Nov/15

I′m unsure about how to tackle  the problem, but how about  this.   If x=y the inequality becomes  ((a+sinx)/(a+sinx))≤e^0 . ∵ a>1 ⇒∄x,a∈R∣a+sinx=0.  So  1≤1 and hence the inequality  holds. In this case  there isn′t any smallest a∈R since  one can infinitely set a to be a value above 1  and very close to 1. No highest lower bound  exists for the set {a∈R∣a>1}.    For y>x⇒y−x>0⇒e^(y−x) >e^0 =1  ∴1−e^(y−x) <0. Keeping note of this we  have   ((a+sinx)/(a+siny))≤e^(y−x)        [a+sinx,a+siny>0 ∵ a>1]  a+sinx≤ae^(y−x) +e^(y−x) siny  a(1−e^(y−x) )≤e^(y−x) siny−sinx  ⇒a≥((e^(y−x) siny−sinx)/(1−e^(y−x) ))       [1−e^(y−x) <0]  a≥((e^(y−x) siny)/(1−e^(y−x) ))−((sinx)/(1−e^(y−x) ))   (∗)    If the RHS of the inequality above  is strictly greater than 1 then the   smallest a possible would be found to  be a=((e^(y−x) siny−sinx)/(1−e^(y−x) )).  If this is true then  ((e^(y−x) siny−sinx)/(1−e^(y−x) ))>1  e^(y−x) siny−sinx<1−e^(y−x)   e^(y−x) (siny+1)<1+sinx  If siny+1≠0  (otherwise siny+1>0)  ∴e^(y−x) <((1+sinx)/(1+siny))    Checking that this is obeyed by the  proposed value for a   ((((e^(y−x) siny−sinx)/(1−e^(y−x) ))+sinx)/(((e^(y−x) siny−sinx)/(1−e^(y−x) ))+siny))≤e^(y−x)   ((e^(y−x) siny−sinx+sinx−e^(y−x) )/(e^(y−x) siny−sinx+siny−e^(y−x) siny))≤e^(y−x)   ((e^(y−x) (siny−1))/(siny−sinx))≤e^(y−x)   ((siny−1)/(siny−sinx))≤1.  y>x so siny≠sinx. If siny>sinx  siny−1≤siny−sinx⇒sinx≤1 (possible)    If siny<sinx⇒siny−1≥siny−sinx  sinx≥1 (possible if x=nπ+(−1)^n (π/2))    Together the cases suggest that the inequality holds  for all x<y, if siny+1≠0.    If the RHS of (∗) is not greater than 1 I  don′t know how one could acquire  the necessary value for a from the  information given. In this case we  must have   a>1.

$${I}'{m}\:{unsure}\:{about}\:{how}\:{to}\:{tackle} \\ $$ $${the}\:{problem},\:{but}\:{how}\:{about} \\ $$ $${this}.\: \\ $$ $${If}\:{x}={y}\:{the}\:{inequality}\:{becomes} \\ $$ $$\frac{{a}+{sinx}}{{a}+{sinx}}\leqslant{e}^{\mathrm{0}} .\:\because\:{a}>\mathrm{1}\:\Rightarrow\nexists{x},{a}\in\mathbb{R}\mid{a}+{sinx}=\mathrm{0}. \\ $$ $${So}\:\:\mathrm{1}\leqslant\mathrm{1}\:{and}\:{hence}\:{the}\:{inequality} \\ $$ $${holds}.\:{In}\:{this}\:{case} \\ $$ $${there}\:{isn}'{t}\:{any}\:{smallest}\:{a}\in\mathbb{R}\:{since} \\ $$ $${one}\:{can}\:{infinitely}\:{set}\:{a}\:{to}\:{be}\:{a}\:{value}\:{above}\:\mathrm{1} \\ $$ $${and}\:{very}\:{close}\:{to}\:\mathrm{1}.\:{No}\:{highest}\:{lower}\:{bound} \\ $$ $${exists}\:{for}\:{the}\:{set}\:\left\{{a}\in\mathbb{R}\mid{a}>\mathrm{1}\right\}. \\ $$ $$ \\ $$ $${For}\:{y}>{x}\Rightarrow{y}−{x}>\mathrm{0}\Rightarrow{e}^{{y}−{x}} >{e}^{\mathrm{0}} =\mathrm{1} \\ $$ $$\therefore\mathrm{1}−{e}^{{y}−{x}} <\mathrm{0}.\:{Keeping}\:{note}\:{of}\:{this}\:{we} \\ $$ $${have}\: \\ $$ $$\frac{{a}+{sinx}}{{a}+{siny}}\leqslant{e}^{{y}−{x}} \:\:\:\:\:\:\:\left[{a}+{sinx},{a}+{siny}>\mathrm{0}\:\because\:{a}>\mathrm{1}\right] \\ $$ $${a}+{sinx}\leqslant{ae}^{{y}−{x}} +{e}^{{y}−{x}} {siny} \\ $$ $${a}\left(\mathrm{1}−{e}^{{y}−{x}} \right)\leqslant{e}^{{y}−{x}} {siny}−{sinx} \\ $$ $$\Rightarrow{a}\geqslant\frac{{e}^{{y}−{x}} {siny}−{sinx}}{\mathrm{1}−{e}^{{y}−{x}} }\:\:\:\:\:\:\:\left[\mathrm{1}−{e}^{{y}−{x}} <\mathrm{0}\right] \\ $$ $${a}\geqslant\frac{{e}^{{y}−{x}} {siny}}{\mathrm{1}−{e}^{{y}−{x}} }−\frac{{sinx}}{\mathrm{1}−{e}^{{y}−{x}} }\:\:\:\left(\ast\right) \\ $$ $$ \\ $$ $${If}\:{the}\:{RHS}\:{of}\:{the}\:{inequality}\:{above} \\ $$ $${is}\:{strictly}\:{greater}\:{than}\:\mathrm{1}\:{then}\:{the}\: \\ $$ $${smallest}\:{a}\:{possible}\:{would}\:{be}\:{found}\:{to} \\ $$ $${be}\:{a}=\frac{{e}^{{y}−{x}} {siny}−{sinx}}{\mathrm{1}−{e}^{{y}−{x}} }. \\ $$ $${If}\:{this}\:{is}\:{true}\:{then} \\ $$ $$\frac{{e}^{{y}−{x}} {siny}−{sinx}}{\mathrm{1}−{e}^{{y}−{x}} }>\mathrm{1} \\ $$ $${e}^{{y}−{x}} {siny}−{sinx}<\mathrm{1}−{e}^{{y}−{x}} \\ $$ $${e}^{{y}−{x}} \left({siny}+\mathrm{1}\right)<\mathrm{1}+{sinx} \\ $$ $${If}\:{siny}+\mathrm{1}\neq\mathrm{0}\:\:\left({otherwise}\:{siny}+\mathrm{1}>\mathrm{0}\right) \\ $$ $$\therefore{e}^{{y}−{x}} <\frac{\mathrm{1}+{sinx}}{\mathrm{1}+{siny}} \\ $$ $$ \\ $$ $${Checking}\:{that}\:{this}\:{is}\:{obeyed}\:{by}\:{the} \\ $$ $${proposed}\:{value}\:{for}\:{a}\: \\ $$ $$\frac{\frac{{e}^{{y}−{x}} {siny}−{sinx}}{\mathrm{1}−{e}^{{y}−{x}} }+{sinx}}{\frac{{e}^{{y}−{x}} {siny}−{sinx}}{\mathrm{1}−{e}^{{y}−{x}} }+{siny}}\leqslant{e}^{{y}−{x}} \\ $$ $$\frac{{e}^{{y}−{x}} {siny}−{sinx}+{sinx}−{e}^{{y}−{x}} }{{e}^{{y}−{x}} {siny}−{sinx}+{siny}−{e}^{{y}−{x}} {siny}}\leqslant{e}^{{y}−{x}} \\ $$ $$\frac{{e}^{{y}−{x}} \left({siny}−\mathrm{1}\right)}{{siny}−{sinx}}\leqslant{e}^{{y}−{x}} \\ $$ $$\frac{{siny}−\mathrm{1}}{{siny}−{sinx}}\leqslant\mathrm{1}. \\ $$ $${y}>{x}\:{so}\:{siny}\neq{sinx}.\:{If}\:{siny}>{sinx} \\ $$ $${siny}−\mathrm{1}\leqslant{siny}−{sinx}\Rightarrow{sinx}\leqslant\mathrm{1}\:\left({possible}\right) \\ $$ $$ \\ $$ $${If}\:{siny}<{sinx}\Rightarrow{siny}−\mathrm{1}\geqslant{siny}−{sinx} \\ $$ $${sinx}\geqslant\mathrm{1}\:\left({possible}\:{if}\:{x}={n}\pi+\left(−\mathrm{1}\right)^{{n}} \left(\pi/\mathrm{2}\right)\right) \\ $$ $$ \\ $$ $${Together}\:{the}\:{cases}\:{suggest}\:{that}\:{the}\:{inequality}\:{holds} \\ $$ $${for}\:{all}\:{x}<{y},\:{if}\:{siny}+\mathrm{1}\neq\mathrm{0}. \\ $$ $$ \\ $$ $${If}\:{the}\:{RHS}\:{of}\:\left(\ast\right)\:{is}\:{not}\:{greater}\:{than}\:\mathrm{1}\:{I} \\ $$ $${don}'{t}\:{know}\:{how}\:{one}\:{could}\:{acquire} \\ $$ $${the}\:{necessary}\:{value}\:{for}\:{a}\:{from}\:{the} \\ $$ $${information}\:{given}.\:{In}\:{this}\:{case}\:{we} \\ $$ $${must}\:{have}\: \\ $$ $${a}>\mathrm{1}.\: \\ $$ $$ \\ $$

Commented byYozzi last updated on 20/Nov/15

This question is from an admissions  quiz and I think its purpose is to see  how one breaks it down rather than  obtaining just a value for a. It′s   all about the process rather than the  answer.

$${This}\:{question}\:{is}\:{from}\:{an}\:{admissions} \\ $$ $${quiz}\:{and}\:{I}\:{think}\:{its}\:{purpose}\:{is}\:{to}\:{see} \\ $$ $${how}\:{one}\:{breaks}\:{it}\:{down}\:{rather}\:{than} \\ $$ $${obtaining}\:{just}\:{a}\:{value}\:{for}\:{a}.\:{It}'{s}\: \\ $$ $${all}\:{about}\:{the}\:{process}\:{rather}\:{than}\:{the} \\ $$ $${answer}. \\ $$

Commented byprakash jain last updated on 20/Nov/15

Ok. The answer a>1 is wrong  ((1.01+sin x)/(1.01+sin y))≤e^(y−x)   x=(π/2), y=((3π)/2)  ((2.01)/(0.01))=201≰e^π

$$\mathrm{Ok}.\:\mathrm{The}\:\mathrm{answer}\:{a}>\mathrm{1}\:{is}\:{wrong} \\ $$ $$\frac{\mathrm{1}.\mathrm{01}+\mathrm{sin}\:{x}}{\mathrm{1}.\mathrm{01}+\mathrm{sin}\:{y}}\leqslant{e}^{{y}−{x}} \\ $$ $${x}=\frac{\pi}{\mathrm{2}},\:{y}=\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$ $$\frac{\mathrm{2}.\mathrm{01}}{\mathrm{0}.\mathrm{01}}=\mathrm{201}\nleq{e}^{\pi} \\ $$

Commented byYozzi last updated on 20/Nov/15

It probably was as simple as   observing no such a exists.

$${It}\:{probably}\:{was}\:{as}\:{simple}\:{as}\: \\ $$ $${observing}\:{no}\:{such}\:{a}\:{exists}. \\ $$

Commented byprakash jain last updated on 20/Nov/15

I have updated answer on where the error is  in the original arguments. If the answer  is no such a exists then we need to prove  that there is no global maxima for f(x,y)  with y>x.

$$\mathrm{I}\:\mathrm{have}\:\mathrm{updated}\:\mathrm{answer}\:\mathrm{on}\:\mathrm{where}\:\mathrm{the}\:\mathrm{error}\:\mathrm{is} \\ $$ $$\mathrm{in}\:\mathrm{the}\:\mathrm{original}\:\mathrm{arguments}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{answer} \\ $$ $$\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:{a}\:\mathrm{exists}\:\mathrm{then}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{prove} \\ $$ $$\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{global}\:\mathrm{maxima}\:\mathrm{for}\:{f}\left({x},{y}\right) \\ $$ $$\mathrm{with}\:{y}>{x}. \\ $$

Commented byYozzi last updated on 20/Nov/15

Yes.

$${Yes}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com