Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 24565 by ajfour last updated on 21/Nov/17

  y=ax^3 +bx^2 +cx+d , then  prove that the equation y=0  has only one real root if   a[(9ad−bc)^2 −4(b^2 −3ac)(c^2 −3bd)]      > 0     provided   b^2  > 3ac .

y=ax3+bx2+cx+d,then provethattheequationy=0 hasonlyonerealrootif a[(9adbc)24(b23ac)(c23bd)] >0providedb2>3ac.

Answered by ajfour last updated on 21/Nov/17

Commented byajfour last updated on 21/Nov/17

If the local minimum value  and the local maximum value,  both, are of the same sign, then,  i believe, there can be just one  real root of a cubic equation.      y=ax^3 +bx^2 +cx+d  ⇒  (dy/dx)=3ax^2 +2bx+c   let  at x= α, β     (dy/dx)=0  ⇒ 𝛂𝛃=(c/(3a))  and   (𝛂+𝛃)=−((2b)/(3a))  ⇒   3aα^2 +2bα+c =0  .....(i)          3aβ^( 2) +2bβ+c =0    .....(ii)  For one real root  y(𝛂)×y(𝛃) > 0  or  3y(𝛂)×3y(𝛃) > 0  3y(α)=  3aα^3 +3bα^2 +3cα+3d   subtracting α×(i) from this  3y(α)=b𝛂^2 +2c𝛂+3d           =(b/(3a))(3a𝛂^2 )+2c𝛂+3d  using (i) again:    3y(α)=−(b/(3a))(2bα+c)+2cα+3d            =2α(c−(b^2 /(3a)))+(3d−((bc)/(3a)))  so   3y(α)×3y(β) =      [4𝛂𝛃(c−(b^2 /(3a)))^2 +2(𝛂+𝛃)(c−(b^2 /(3a)))(3d−((bc)/(3a)))                               +(3d−((bc)/(3a)))^2 ]   As  α=(c/(3a))   and  β=−((2b)/(3a))   we have  3y(α)×3y(β)=     ((4c)/(3a))(c−(b^2 /(3a)))^2 −((4b)/(3a))(c−(b^2 /(3a)))(3d−((bc)/(3a)))                           +(3d−((bc)/(3a)))^2  > 0  or  4c(3ac−b^2 )^2 −4b(3ac−b^2 )(9ad−bc)                            +3a(9ad−bc)^2  > 0  or  3a(9ad−bc)^2 +4(3ac−b^2 )(3ac^2 −b^2 c                            −9abd+b^2 c) > 0  ⇒  3a(9ad−bc)^2 +4(3a)(3ac−b^2 )(c^2 −3bd)>0  a[(9ad−bc)^2 −4(b^2 −3ac)(c^2 −3bd)]>0 .

Ifthelocalminimumvalue andthelocalmaximumvalue, both,areofthesamesign,then, ibelieve,therecanbejustone realrootofacubicequation. y=ax3+bx2+cx+d dydx=3ax2+2bx+c letatx=α,βdydx=0 αβ=c3aand(α+β)=2b3a 3aα2+2bα+c=0.....(i) 3aβ2+2bβ+c=0.....(ii) Foronerealroot y(α)×y(β)>0 or3y(α)×3y(β)>0 3y(α)=3aα3+3bα2+3cα+3d subtractingα×(i)fromthis 3y(α)=bα2+2cα+3d =b3a(3aα2)+2cα+3d using(i)again: 3y(α)=b3a(2bα+c)+2cα+3d =2α(cb23a)+(3dbc3a) so3y(α)×3y(β)= [4αβ(cb23a)2+2(α+β)(cb23a)(3dbc3a) +(3dbc3a)2] Asα=c3aandβ=2b3awehave 3y(α)×3y(β)= 4c3a(cb23a)24b3a(cb23a)(3dbc3a) +(3dbc3a)2>0 or 4c(3acb2)24b(3acb2)(9adbc) +3a(9adbc)2>0 or 3a(9adbc)2+4(3acb2)(3ac2b2c 9abd+b2c)>0 3a(9adbc)2+4(3a)(3acb2)(c23bd)>0 a[(9adbc)24(b23ac)(c23bd)]>0.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com