All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 24565 by ajfour last updated on 21/Nov/17
y=ax3+bx2+cx+d,then provethattheequationy=0 hasonlyonerealrootif a[(9ad−bc)2−4(b2−3ac)(c2−3bd)] >0providedb2>3ac.
Answered by ajfour last updated on 21/Nov/17
Commented byajfour last updated on 21/Nov/17
Ifthelocalminimumvalue andthelocalmaximumvalue, both,areofthesamesign,then, ibelieve,therecanbejustone realrootofacubicequation. y=ax3+bx2+cx+d ⇒dydx=3ax2+2bx+c letatx=α,βdydx=0 ⇒αβ=c3aand(α+β)=−2b3a ⇒3aα2+2bα+c=0.....(i) 3aβ2+2bβ+c=0.....(ii) Foronerealroot y(α)×y(β)>0 or3y(α)×3y(β)>0 3y(α)=3aα3+3bα2+3cα+3d subtractingα×(i)fromthis 3y(α)=bα2+2cα+3d =b3a(3aα2)+2cα+3d using(i)again: 3y(α)=−b3a(2bα+c)+2cα+3d =2α(c−b23a)+(3d−bc3a) so3y(α)×3y(β)= [4αβ(c−b23a)2+2(α+β)(c−b23a)(3d−bc3a) +(3d−bc3a)2] Asα=c3aandβ=−2b3awehave 3y(α)×3y(β)= 4c3a(c−b23a)2−4b3a(c−b23a)(3d−bc3a) +(3d−bc3a)2>0 or 4c(3ac−b2)2−4b(3ac−b2)(9ad−bc) +3a(9ad−bc)2>0 or 3a(9ad−bc)2+4(3ac−b2)(3ac2−b2c −9abd+b2c)>0 ⇒ 3a(9ad−bc)2+4(3a)(3ac−b2)(c2−3bd)>0 a[(9ad−bc)2−4(b2−3ac)(c2−3bd)]>0.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com