Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 24605 by ajfour last updated on 22/Nov/17

Commented by ajfour last updated on 22/Nov/17

Find the central octagonal area  if ABCD is a square and points  P, Q, R, and S are the midpoints  of its sides. Take edge length of  square to be unity.

$${Find}\:{the}\:{central}\:{octagonal}\:{area} \\ $$$${if}\:{ABCD}\:{is}\:{a}\:{square}\:{and}\:{points} \\ $$$${P},\:{Q},\:{R},\:{and}\:{S}\:{are}\:{the}\:{midpoints} \\ $$$${of}\:{its}\:{sides}.\:{Take}\:{edge}\:{length}\:{of} \\ $$$${square}\:{to}\:{be}\:{unity}. \\ $$

Answered by ajfour last updated on 22/Nov/17

let centre of square be O(0,0).  Let E(0,(1/4))  be intersection of SC and  DQ.  Equation of DQ:  y=(1/4)−(x/2)  Equation of BR:  y=(1/2)−2x  Their intersection point   F((1/6) , (1/6))  Required Area of octagon:    =8×(1/2)×(1/4)×(1/6) =(1/6) .

$${let}\:{centre}\:{of}\:{square}\:{be}\:{O}\left(\mathrm{0},\mathrm{0}\right). \\ $$$${Let}\:{E}\left(\mathrm{0},\frac{\mathrm{1}}{\mathrm{4}}\right)\:\:{be}\:{intersection}\:{of}\:{SC}\:{and} \\ $$$${DQ}. \\ $$$${Equation}\:{of}\:{DQ}: \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{4}}−\frac{{x}}{\mathrm{2}} \\ $$$${Equation}\:{of}\:{BR}: \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{x} \\ $$$${Their}\:{intersection}\:{point}\: \\ $$$${F}\left(\frac{\mathrm{1}}{\mathrm{6}}\:,\:\frac{\mathrm{1}}{\mathrm{6}}\right) \\ $$$${Required}\:{Area}\:{of}\:{octagon}: \\ $$$$\:\:=\mathrm{8}×\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{6}}\:=\frac{\mathrm{1}}{\mathrm{6}}\:. \\ $$

Commented by jota last updated on 22/Nov/17

Los vertices sobre la diagonal   estan a  (√2)/6 del centro O.

$${Los}\:{vertices}\:{sobre}\:{la}\:{diagonal}\: \\ $$$${estan}\:{a}\:\:\sqrt{\mathrm{2}}/\mathrm{6}\:{del}\:{centro}\:{O}. \\ $$

Answered by sma3l2996 last updated on 22/Nov/17

we have  AR=(√(1+(1/2)^2 ))=((√5)/2)  and  also   ((RE)/(RD))=((DR)/(AR))⇔RE=((DR^2 )/(AR))=(((1/2)^2 )/((√5)/2))=(1/(2(√5)))  so  DE=(√(DR^2 −RE^2 ))=(√((1/2)^2 −((1/(2(√5))))^2 ))  DE=((√5)/5)  we know that DE=AH  so EH=AR−AH−ER  EH=((√5)/2)−((√5)/5)−((√5)/(10))⇔EH=((√5)/5)  and also we have  ((Aa)/(AS))=((AR)/(AD))⇔Aa=((AR×AS)/(AD))=((√5)/(2×2))  so Ha=Aa−AH=((√5)/4)−((√5)/5)⇔Ha=((√5)/(20))  and  ab=EH−2Ha=((√5)/5)−((√5)/(10))=((√5)/(10))  so  S_(octa) =S_(EFGH) −4S_(abH)   S_(abH) =((aH×ab)/2)  because Ha=Hb  S_(octa) =EH^2 −4((aH×ab)/2)=(1/5)−2×(5/(20×10))  S_(octa) =(3/(20))

$${we}\:{have}\:\:{AR}=\sqrt{\mathrm{1}+\left(\mathrm{1}/\mathrm{2}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${and}\:\:{also}\:\:\:\frac{{RE}}{{RD}}=\frac{{DR}}{{AR}}\Leftrightarrow{RE}=\frac{{DR}^{\mathrm{2}} }{{AR}}=\frac{\left(\mathrm{1}/\mathrm{2}\right)^{\mathrm{2}} }{\sqrt{\mathrm{5}}/\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${so}\:\:{DE}=\sqrt{{DR}^{\mathrm{2}} −{RE}^{\mathrm{2}} }=\sqrt{\left(\mathrm{1}/\mathrm{2}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} } \\ $$$${DE}=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$$${we}\:{know}\:{that}\:{DE}={AH}\:\:{so}\:{EH}={AR}−{AH}−{ER} \\ $$$${EH}=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{10}}\Leftrightarrow{EH}=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$$${and}\:{also}\:{we}\:{have}\:\:\frac{{Aa}}{{AS}}=\frac{{AR}}{{AD}}\Leftrightarrow{Aa}=\frac{{AR}×{AS}}{{AD}}=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}×\mathrm{2}} \\ $$$${so}\:{Ha}={Aa}−{AH}=\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\Leftrightarrow{Ha}=\frac{\sqrt{\mathrm{5}}}{\mathrm{20}} \\ $$$${and}\:\:{ab}={EH}−\mathrm{2}{Ha}=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{10}}=\frac{\sqrt{\mathrm{5}}}{\mathrm{10}} \\ $$$${so}\:\:{S}_{{octa}} ={S}_{{EFGH}} −\mathrm{4}{S}_{{abH}} \\ $$$${S}_{{abH}} =\frac{{aH}×{ab}}{\mathrm{2}}\:\:{because}\:{Ha}={Hb} \\ $$$${S}_{{octa}} ={EH}^{\mathrm{2}} −\mathrm{4}\frac{{aH}×{ab}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{5}}−\mathrm{2}×\frac{\mathrm{5}}{\mathrm{20}×\mathrm{10}} \\ $$$${S}_{{octa}} =\frac{\mathrm{3}}{\mathrm{20}} \\ $$

Commented by sma3l2996 last updated on 22/Nov/17

Answered by jota last updated on 22/Nov/17

Los vertices del octogono en el  primer cuadrante son ( 1/4   0)    (1/6  1/6) y  (0  1/4).   ⇒A=8(1/2) (1/4) (1/6)=(1/6)  ==^

$${Los}\:{vertices}\:{del}\:{octogono}\:{en}\:{el} \\ $$$${primer}\:{cuadrante}\:{son}\:\left(\:\mathrm{1}/\mathrm{4}\:\:\:\mathrm{0}\right)\:\: \\ $$$$\left(\mathrm{1}/\mathrm{6}\:\:\mathrm{1}/\mathrm{6}\right)\:{y}\:\:\left(\mathrm{0}\:\:\mathrm{1}/\mathrm{4}\right). \\ $$$$\:\Rightarrow{A}=\mathrm{8}\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$=\overset{} {=} \\ $$

Commented by ajfour last updated on 22/Nov/17

Thank you too much.

$${Thank}\:{you}\:{too}\:{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com