Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24644 by Tinkutara last updated on 23/Nov/17

The density of a non-uniform rod of  length 1 m is given by ρ(x) = a(1 + bx^2 )  where a and b are constants and  0 ≤ x ≤ 1. The centre of mass of the rod  will be at  (1) ((3(2 + b))/(4(3 + b)))  (2) ((4(2 + b))/(3(3 + b)))  (3) ((3(3 + b))/(4(2 + b)))  (4) ((4(3 + b))/(3(2 + b)))

$$\mathrm{The}\:\mathrm{density}\:\mathrm{of}\:\mathrm{a}\:\mathrm{non}-\mathrm{uniform}\:\mathrm{rod}\:\mathrm{of} \\ $$$$\mathrm{length}\:\mathrm{1}\:\mathrm{m}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\rho\left({x}\right)\:=\:{a}\left(\mathrm{1}\:+\:{bx}^{\mathrm{2}} \right) \\ $$$$\mathrm{where}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{constants}\:\mathrm{and} \\ $$$$\mathrm{0}\:\leqslant\:{x}\:\leqslant\:\mathrm{1}.\:\mathrm{The}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rod} \\ $$$$\mathrm{will}\:\mathrm{be}\:\mathrm{at} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{3}\left(\mathrm{2}\:+\:{b}\right)}{\mathrm{4}\left(\mathrm{3}\:+\:{b}\right)} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{4}\left(\mathrm{2}\:+\:{b}\right)}{\mathrm{3}\left(\mathrm{3}\:+\:{b}\right)} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{3}\left(\mathrm{3}\:+\:{b}\right)}{\mathrm{4}\left(\mathrm{2}\:+\:{b}\right)} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{4}\left(\mathrm{3}\:+\:{b}\right)}{\mathrm{3}\left(\mathrm{2}\:+\:{b}\right)} \\ $$

Answered by mrW1 last updated on 23/Nov/17

x_c =((∫_0 ^( 1) a(1+bx^2 )xdx)/(∫_0 ^( 1) a(1+bx^2 )dx))  =(((1/2)+(b/4))/(1+(b/3)))=((3(2+b))/(4(3+b)))  ⇒option (1)

$${x}_{{c}} =\frac{\int_{\mathrm{0}} ^{\:\mathrm{1}} {a}\left(\mathrm{1}+{bx}^{\mathrm{2}} \right){xdx}}{\int_{\mathrm{0}} ^{\:\mathrm{1}} {a}\left(\mathrm{1}+{bx}^{\mathrm{2}} \right){dx}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}+\frac{{b}}{\mathrm{4}}}{\mathrm{1}+\frac{{b}}{\mathrm{3}}}=\frac{\mathrm{3}\left(\mathrm{2}+{b}\right)}{\mathrm{4}\left(\mathrm{3}+{b}\right)} \\ $$$$\Rightarrow{option}\:\left(\mathrm{1}\right) \\ $$

Commented by Tinkutara last updated on 24/Nov/17

Thank you Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Answered by jota+ last updated on 23/Nov/17

x_C =((∫_0 ^1 xρ(x)dx)/(∫_0 ^1 ρ(x)dx))

$${x}_{{C}} =\frac{\int_{\mathrm{0}} ^{\mathrm{1}} {x}\rho\left({x}\right){dx}}{\int_{\mathrm{0}} ^{\mathrm{1}} \rho\left({x}\right){dx}} \\ $$

Commented by Tinkutara last updated on 24/Nov/17

Thank you Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com