Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24687 by Tinkutara last updated on 24/Nov/17

A particle starts from rest at t = 0 and  moves with uniform acceleration. Then  (1) In any time interval starting from  t = 0 the space-average of the velocity  is (4/3) times of time average velocity  (2) If v = v_1  at t = t_1  and v = v_2  at t = t_2   then time average velocity between t_1   and t_2  is ((v_1  + v_2 )/2)  (3) Distance travelled in successive  equal time intervals are in proportion  of 1 : 3 : 5 ... and so on  (4) If v_1 , v_2 , v_3  denote the average  velocities in three successive intervals  of time t_1 , t_2 , t_3  then ((v_1  − v_2 )/(v_2  − v_3 )) = ((t_1  + t_2 )/(t_2  + t_3 ))

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{at}\:{t}\:=\:\mathrm{0}\:\mathrm{and} \\ $$$$\mathrm{moves}\:\mathrm{with}\:\mathrm{uniform}\:\mathrm{acceleration}.\:\mathrm{Then} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{In}\:\mathrm{any}\:\mathrm{time}\:\mathrm{interval}\:\mathrm{starting}\:\mathrm{from} \\ $$$${t}\:=\:\mathrm{0}\:\mathrm{the}\:\mathrm{space}-\mathrm{average}\:\mathrm{of}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{is}\:\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{times}\:\mathrm{of}\:\mathrm{time}\:\mathrm{average}\:\mathrm{velocity} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{If}\:{v}\:=\:{v}_{\mathrm{1}} \:\mathrm{at}\:{t}\:=\:{t}_{\mathrm{1}} \:\mathrm{and}\:{v}\:=\:{v}_{\mathrm{2}} \:\mathrm{at}\:{t}\:=\:{t}_{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{time}\:\mathrm{average}\:\mathrm{velocity}\:\mathrm{between}\:{t}_{\mathrm{1}} \\ $$$$\mathrm{and}\:{t}_{\mathrm{2}} \:\mathrm{is}\:\frac{{v}_{\mathrm{1}} \:+\:{v}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Distance}\:\mathrm{travelled}\:\mathrm{in}\:\mathrm{successive} \\ $$$$\mathrm{equal}\:\mathrm{time}\:\mathrm{intervals}\:\mathrm{are}\:\mathrm{in}\:\mathrm{proportion} \\ $$$$\mathrm{of}\:\mathrm{1}\::\:\mathrm{3}\::\:\mathrm{5}\:...\:\mathrm{and}\:\mathrm{so}\:\mathrm{on} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{If}\:{v}_{\mathrm{1}} ,\:{v}_{\mathrm{2}} ,\:{v}_{\mathrm{3}} \:\mathrm{denote}\:\mathrm{the}\:\mathrm{average} \\ $$$$\mathrm{velocities}\:\mathrm{in}\:\mathrm{three}\:\mathrm{successive}\:\mathrm{intervals} \\ $$$$\mathrm{of}\:\mathrm{time}\:{t}_{\mathrm{1}} ,\:{t}_{\mathrm{2}} ,\:{t}_{\mathrm{3}} \:\mathrm{then}\:\frac{{v}_{\mathrm{1}} \:−\:{v}_{\mathrm{2}} }{{v}_{\mathrm{2}} \:−\:{v}_{\mathrm{3}} }\:=\:\frac{{t}_{\mathrm{1}} \:+\:{t}_{\mathrm{2}} }{{t}_{\mathrm{2}} \:+\:{t}_{\mathrm{3}} } \\ $$

Answered by ajfour last updated on 25/Nov/17

(1).      (v)_(spaceavg) =((∫vdx)/(Δx))  as   ((vdv)/dx)=a  ⇒    vdx = ((v^2 dv)/a)  so   (v)_(spaceavg) =((∫_0 ^(  v) v^2 dv)/(aΔx))            =(v^3 /(3a(vt/2)))=((2v^2 )/(3at))=(((4at))/(3at))((v/2))    (v)_(space avg) = (4/3)(v)_(time avg)  .  (2).     (v)_(time avg)  =(s/(△t))              =((v_1 △t+(1/2)a(△t)^2 )/(△t))              =v_1 +(1/2)(a△t)              =((2v_1 +(v_2 −v_1 ))/2) =((v_1 +v_2 )/2) .  (3).     s_1 =(1/2)at^2                s_1 +s_2 =(1/2)a(2t)^2 =4s_1   ⇒      s_2  =3s_1         s_1 +s_2 +s_3 =(1/2)a(3t)^2 =9s_1   ⇒       s_3 =5s_1        and so on..  (4).   let velocity at t=t_i   be u              v_1 =u+((at_1 )/2)              v_2 =u+at_1 +((at_2 )/2)  v_1 −v_2 =−(a/2)(t_1 +t_2 )      .....(i)  v_3 =u+at_1 +at_2 +(1/2)at_3   so   v_2 −v_3 =−(a/2)(t_2 +t_3 )   ....(ii)  from (i) and (ii) we get  ((v_1 −v_2 )/(v_2 −v_3 )) =((t_1 +t_2 )/(t_2 +t_3 )) .

$$\left(\mathrm{1}\right).\:\:\:\:\:\:\left({v}\right)_{{spaceavg}} =\frac{\int{vdx}}{\Delta{x}} \\ $$$${as}\:\:\:\frac{{vdv}}{{dx}}={a}\:\:\Rightarrow\:\:\:\:{vdx}\:=\:\frac{{v}^{\mathrm{2}} {dv}}{{a}} \\ $$$${so}\:\:\:\left({v}\right)_{{spaceavg}} =\frac{\int_{\mathrm{0}} ^{\:\:{v}} {v}^{\mathrm{2}} {dv}}{{a}\Delta{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{{v}^{\mathrm{3}} }{\mathrm{3}{a}\left({vt}/\mathrm{2}\right)}=\frac{\mathrm{2}{v}^{\mathrm{2}} }{\mathrm{3}{at}}=\frac{\left(\mathrm{4}{at}\right)}{\mathrm{3}{at}}\left(\frac{{v}}{\mathrm{2}}\right) \\ $$$$\:\:\left({v}\right)_{{space}\:{avg}} =\:\frac{\mathrm{4}}{\mathrm{3}}\left({v}\right)_{{time}\:{avg}} \:. \\ $$$$\left(\mathrm{2}\right).\:\:\:\:\:\left({v}\right)_{{time}\:{avg}} \:=\frac{{s}}{\bigtriangleup{t}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{v}_{\mathrm{1}} \bigtriangleup{t}+\frac{\mathrm{1}}{\mathrm{2}}{a}\left(\bigtriangleup{t}\right)^{\mathrm{2}} }{\bigtriangleup{t}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={v}_{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\left({a}\bigtriangleup{t}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}{v}_{\mathrm{1}} +\left({v}_{\mathrm{2}} −{v}_{\mathrm{1}} \right)}{\mathrm{2}}\:=\frac{{v}_{\mathrm{1}} +{v}_{\mathrm{2}} }{\mathrm{2}}\:. \\ $$$$\left(\mathrm{3}\right).\:\:\:\:\:{s}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{s}_{\mathrm{1}} +{s}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{a}\left(\mathrm{2}{t}\right)^{\mathrm{2}} =\mathrm{4}{s}_{\mathrm{1}} \\ $$$$\Rightarrow\:\:\:\:\:\:{s}_{\mathrm{2}} \:=\mathrm{3}{s}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:{s}_{\mathrm{1}} +{s}_{\mathrm{2}} +{s}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}{a}\left(\mathrm{3}{t}\right)^{\mathrm{2}} =\mathrm{9}{s}_{\mathrm{1}} \\ $$$$\Rightarrow\:\:\:\:\:\:\:{s}_{\mathrm{3}} =\mathrm{5}{s}_{\mathrm{1}} \:\:\:\:\:\:\:{and}\:{so}\:{on}.. \\ $$$$\left(\mathrm{4}\right).\:\:\:{let}\:{velocity}\:{at}\:{t}={t}_{{i}} \:\:{be}\:{u} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{v}_{\mathrm{1}} ={u}+\frac{{at}_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{v}_{\mathrm{2}} ={u}+{at}_{\mathrm{1}} +\frac{{at}_{\mathrm{2}} }{\mathrm{2}} \\ $$$${v}_{\mathrm{1}} −{v}_{\mathrm{2}} =−\frac{{a}}{\mathrm{2}}\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)\:\:\:\:\:\:.....\left({i}\right) \\ $$$${v}_{\mathrm{3}} ={u}+{at}_{\mathrm{1}} +{at}_{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{at}_{\mathrm{3}} \\ $$$${so}\:\:\:{v}_{\mathrm{2}} −{v}_{\mathrm{3}} =−\frac{{a}}{\mathrm{2}}\left({t}_{\mathrm{2}} +{t}_{\mathrm{3}} \right)\:\:\:....\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get} \\ $$$$\frac{{v}_{\mathrm{1}} −{v}_{\mathrm{2}} }{{v}_{\mathrm{2}} −{v}_{\mathrm{3}} }\:=\frac{{t}_{\mathrm{1}} +{t}_{\mathrm{2}} }{{t}_{\mathrm{2}} +{t}_{\mathrm{3}} }\:. \\ $$

Commented by Tinkutara last updated on 25/Nov/17

Thank you Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com